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PLETHYSM OF S-FUNCTIONS
By H. O. FOULKES

Unwersity College, Swansea

(Communicated by A. C. Aitken, F.R.S.—Received 7 September 1953)
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The first problem solved here is that of determining the coefficient of any S-function {A} in the
expansion of {m} ® {u}, where m is a positive integer and (#) is a partition of 4. The method is
not recursive or laborious and can be applied equally well to large as to small values of m. It will
also yield a specific formula for the coefficient when {A} has any prescribed form. Such formulae
given here include those for the coefficients of

{dm—k, k}, {m+k,m+k,m—k,m—k}, {m+k,mm,m—k}, {4m—2k, k, k},

where m >k >0, and several other types.
Some of the results proved incidentally in the development of this method are also of some
intrinsic interest. Thus a formula is obtained and proved for the coefficient of {A} = {A,,4,,...,A,}
in {m}* when A,<m and n is any integer, and it is proved that the coeflicient of any {A} in {m}" is
4 congruent to 1,0 or —1, mod n when 7 is prime and is congruent to 1,0 or —1, mod n—1 when
- n—1 is prime.
From the results obtained for () a partition of four certain S-functions are seen to have the

o
< — same coefficient in {m} ® {#}. Thus, if A; <2m, then the coeflicients of
S — {Ap Ay A5, A} and  {2m—A,, 2m— Ay, 2m—A,, 2m— A}

= are proved to be equal, and if £ is even, A, <m, and m+A, > S > A, then the coeflicients of

— p q 2 4 2
E 8 | A Ay A, A} and  {8m—38—Ay, B—Ay, f— A5, f— A5}

are equal.

= These results on related coefficients are gathered into five main theorems which are proved for

all m and n in the last section of the paper.

1. INTRODUCTION

The problem of expressing an invariant matrix of an invariant matrix as a direct sum of
irreducible invariant matrices is that of expressing the plethysm {A}® {#} of two S-functions
as a sum of S-functions. Several attacks (Littlewood 1944, 1951; Murnaghan 19514, b,¢;
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556 H. O. FOULKES ON THE

Robinson 1949, 1950; Thrall 1942; Todd 1949) have been made on this problem, varying
considerably in their generality and the degree to which the results obtained have been
applicable to numerical cases. As the weights of {A} and {x} increase it becomes more and
more apparent that there is need to develop a technique of finding the coefficient of any
given S-function in a plethysm, rather than a method, inevitably very laborious, of deter-
mining the full expansion. Furthermore, there is need to consider the structure of any given
plethysm to see whether the terms can be grouped into sets in any systematic way, or
whether any relations exist between the coefficients that arise. Something of this sort is
known to be the case for {m}® S, and {1"}® S, (Foulkes 1951), in which every S-function
with £ parts appearing in the latter result can be characterized by a partition of m together
with a set of £ non-negative integers.

Explicit results for {m}® {4}, where m is an integer and (x) is a partition of 2 or 3, are known
(Littlewood 1944 ; Thrall 1942). A method has been given (Duncan 1952 a) for () a partition
of 4, but it involves S-function multiplication and will entail substantial computation in all
but the simpler cases. In the present paper the initial objective is to give a rapid method for
the explicit determination of the coeflicient of any given {A} in {m}® {4}, where (1) and (x)
are respectively partitions of 4m and 4. Such a method, exceedingly simple in its application
to numerical cases, is obtained. No S-function multiplication is needed, nor recursive
relations, and the method is as easy to apply to large values of m as to small values. Some of
the incidental theorems which contribute to this method for # = 4 are proved for the general
case when () is a partition of any positive integer n. Among these, one of particular interest
is a simple formula for the coefficient of {1;, A,, ..., 4,} in {m}" whenever 1,<m.

The precise method developed here for 7 = 4 leads to specific formulae for the coefficients
arising in {m}® {u}. Several of these formulae are given and others can be easily derived.
Furthermore, the results for n = 4 show that various relations, most of them hitherto
unsuspected, exist between the coefficients. Thus, if {A} = {A;,4,,43,4,} and A, <2m, then
the coefficients of {A} and {2m —A,, 2m— A5, 2m—A,, 2m—A,} in {m}® {u} are equal. Another
of these relations is that if 1,<<m and m is even, then the coeflicients of {1} and

{m+ 2+ 3+, m—Ay,m—2Ag,m—A5}

in {m}® {4} are equal, whereas if m is odd, the coeflicient of either of these S-functions in
{m}® {u} is equal to the coeflicient of the other in {m}® {#}, where (x) and (i) are conjugate
partitions.

In the last part of the paper the various relations observed to hold between the coefficients
in {m}® {u}, where (g) is a partition of 4, are proved to hold when () is a partition of any
integer n. Apart from their intrinsic interest, these results should be very useful in any
further computative work on plethysm of S-functions.

The principal technique employed is the method of differential operators associated with
S-functions (Foulkes 1949). My thanks are due to Dr D. G. Duncan of the University of
Arizona for sending me his evaluations of {7}® {4} and {7}® {212} which were useful in
verifying some of the theorems, and to Professor A. C. Aitken, F.R.S., for reading the
manuscript.

Murnaghan (1951¢) has verified the author’s determinations of {6}® {4} and {5}® {4}
(Foulkes 1950), and Littlewood (1944) has given {4}® {4}, {3}® {4} and {2}® {4}. All the


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PLETHYSM OF S-FUNCTIONS ' 557

main results of this paper will yield further results by applying the theorem of conjugates
(Littlewood 1944), but such derived theorems are easily written down and will not be
enumerated here.

2. PRELIMINARY

It is known (Zia-ud-Din 1936; Murnaghan 19514; Foulkes 1949) that if (#) is any
partition of 4, then

{m}® {4} = il-! [ {m}* + 6, {m}? {m)® 4 8 {m} {m}® + 3y {m}® {m}® +- 6 {m}“],

where }%” is the characteristic of the class pin theirreducible representation of the symmetric
group corresponding to (), and {m}® is the expression obtained from {m} when every S, is
replaced by S,,, this expression being equal to {m}® S,. The S-functions appearing in
{m}® {u} are known to be those associated with partitions of 4m into not more than four parts.
If (1) = (A;,45, A5, 4,) is a partition of 4m, where A;>1,>1;>1,, and D, is the operator
associated with (1), then it is known that D,[{m}® {4}] is the coefficient of {A} in {m}® {x}.
This D, notation will be used throughout the paper. An explicit result for each of

Difmy, DifmP(m®, Dyfm}{m}®, Dyfm}®{m}® and Dyfm}®

is obtained for every A and m, and so D,[{m}® {#}] can be obtained by substitution in the
above expression for {m}® {u}.

3. EvavrvaTtion oF D,{m}"

The following general theorem was given by Duncan (1952 ¢) and is useful in obtaining
the coefficients of all the S-functions without zero parts in {m-1}" when the full expansion
of {m}" is known.

TrEOREM 1. If (A) = (A}, Ay, ..., A,) is any partition of mn, then

D)u+1 g+, eee, /\,,+1{m+ l}n = D/\{m}"

Proof. By the Littlewood-Richardson rule for the multiplication of S-functions, the
number of ways of building the Young diagram (1) from m a,’s, m a,’s, ..., m «,’s is the same
as the number of ways the diagram (1, +1,4,+1, ...,4,+1) can be built up from m+1 «,’s,
m+1ays,...,m+1a,’s, since the diagrams differ merely by a column consisting of
Oy Oy +vvy Ol

The following is another general theorem, giving a specific formula for the coefficient
of {A} in {m}" in all cases in which 1, <m:

THEOREM 2. If A,<<m, then

II (4, =A—7+s)

Dl = = sy T =011

where 1, s take all values from 2 to n.

Proof. In building the diagram (A) from the mn symbols «,, 5, ..., where i = 1,2, ...,m,
the first row must necessarily start with a,, a,, ..., ®,,. The number of ways of completing the
diagram is now the number of ways of building the diagram (,,,, ...,4,) with the s,
7/’s, ..., where not all the symbols need be used. Any f,,7,, ... not used in (,,4,, ..., A,) are

70-2
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558 H. O. FOULKES ON THE

merely added to the right of the m a,’s in the first row of (1) in order to give ultimately 4,
symbols in the first row.

Butif {y} = XK, xjuy... x5}, then K is the number of standard Young tableaux that can
be formed from the symbol x, used »; times, the symbol x, used v, times, and so on, no symbol
being repeated in the same column (Littlewood 1950, p. 191). Hence, taking

{1} = {5 .., A,

the number of ways of building (), and consequently (1), is the sum of the numerical
coefficients K,,. This sum is obtained by putting %, = x, = ... = x, = 1. An expression for
the numerical value of an S-function when each of the quantities involved is unity has been
given by Littlewood (1950, p. 126) in the form

= {mnens ...} = x9Q, /4",

where ¢ is the number of which (7) is a partition, @, is the product of the first 7, terms from

each ith row of n—1,n,n+1,...,

n—2,n—1,nn+1,...,

n—3,n—2,n—1,n,...,

and ¥ has its usual significance as the group characteristic of the class (1¢) in the representa-
tion of the symmetric group which is associated with (7). But ¢ = 4,445+ ...+4,, and
q! H (/Ir—_/“s—_r_}_‘y)

r<s

X =
CETM (= 1) — (r—D)]!

forr,s = 2,3,...,n. Also
Q,= (n—1)n(n+1)...[(n—1)+1,—1]
X(n—2) (n—1)n...[(n—2)+23—1]

and so the theorem follows.

CoRrOLLARY 1. If
B, =N —(n—=1)a, A+, A3+a, ..., A, +a},

where Ay <m and m—2Ay,=>0> —A,, then D, {m}" = D,{m}".
CoOROLLARY 2. If
A, = 2nm— (n=1) f—=Ayy f=yy =Ny ooy =},
where 1, <<m and m~+2A,=F>A,, then D,\}‘_{m}" = D {m}".
COROLLARY 3. If A, <m, then D\{m}® = Ay— A5+ 1. This result has been given by Thrall (1942).
COROLLARY 4. If 1, <m, then D\{m}* = (1, —2A5-+1) (A,—2A,+2) (A3—2A,+1).
CoroLLARY 5. The cogfficient given by the theorem is never zero, since A, —r=EA;—s.

~ COROLLARY 6. If Ay<m, then D, », .. rim~+1}" = Dy{m}".
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It has been pointed out to me by Mr W. R. Perkins that an expression for the coefficient
of {A} in {m}*, when A,<m, has been given by Kostka (1883). This expression, while it can
be shown to be equivalent to that in the above theorem, is expressed in terms of the parts
of the conjugate partition (1) and is not in as simple a form as the above. Its derivation also
is much more involved. - \

THEOREM 3. If A, <2m and {2m— A} denotes {2m— A, 2m—A,_1, 2m— A, _, ..., 2m— A}, then
D, x{my" = Dym.

Proof. It has to be shown that with each method of constructing a Young tableau in the
shape of the partition graph of (1) from n sets «;, 8, ..., each of m symbols, there is associated
a unique method of constructing a tableau corresponding to (2m—A) from 7 sets o, ...,
each of m symbols.

Consider a rectangle of z rows, each of 2m nodes. Let a Young tableau corresponding to
(1) be constructed with the mn symbols «;,f,, ..., the tableau occupying the top left-hand
corner of the rectangle. The first row will have aj,a,, ...,«,, in the first m places. Place
&y, 0y, ..., &y, in the last m places in the last row of the rectangle. There will thus be an «; or
an ¢; in every column of the rectangle. There will be m f;’s shared between the first two rows
of the rectangle. Place f], £, ..., fy, in the last two rows of the rectangle so that every column
has either a f; or a §;. Similarly, place y}, 73, ..., 7., in the last three rows of the rectangle such
that every column has either a y; or a ;. This procedure is continued until the rectangle is
completely filled with the symbols. It is evident that the bottom right-hand corner of the
rectangle will contain an inverted Young tableau corresponding to (2 —A). The theorem
follows.

CoROLLARY 1. If l,<m, and m—Ay=>a> —A,, and A, — (n—1) a < 2m, then
Dy\{my* = D,,,_3 {m}".

CoroLLARY 2. If A, <m, and m~+2,=>F=Ay, and A, = (2m—p) (n—1), then
Dy{my* = Dy, _5,{m}.

CoOROLLARY 3. If f = m, the last result gives, when \y-+25+ ...+, <m,

Dm+/\2, M+AGyeee, m+Ap, m—(A2+/\3+...+/\n){m}n = D/\{m}n'

Theorems 2 and 3 and their corollaries do not cover all the S-functions appearing in
{m}", but they do make possible some grouping of these S-functions. Thus theorem 2
determines that the coefficient of {27.1} in {7}*is 3. The first corollary to this theorem gives
6=>a>0, and so the coefficients of {27.1},, {27.1},, ..., {27.1}; are also 3. These S-functions
are respectively {24.21%}, {21.322}, {18.43%}, {15.542}, {12.65%} and {9762}. The second
corollary gives 7>/£>1 and leads to the seven S-functions {27.1};, {27.1}, ..., {27.1};, each
of which has coefficient 3. These are respectively {26.12}, {23.221}, {20.322}, {17.423},
{14.5%4}, {11.6%} and {8726}. Theorem 3 can now be applied to {27.1}s, {27.1}, {27.1};,
{27.1}, giving a further four S-functions

{141} = {9282}, {14—2;} = {8275}, {14—1;} ={10.9% and {14—T;} — {9823},

which also have 3 as coefficient in {7}%. It so happens in this example that all S-functions
with coefficient 3 have been given above, but this need not occur in every case. That this
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560 H. O. FOULKES ON THE

set of eighteen S-functions may be defined by any one of them is implied by the following
theorem:

THEOREM 4.

(i) {{/1}061}(2&2 = {/1}061+:x2’ (ii) {{A}'ﬂ1};92 = {A}ﬁz—ﬂl’

(i) Al =0 () e = Weip

Proof. (i) {A},, = A —(n—1) &y, Ag g, A3+, o0y A 4y}, Where m—2A,>a,> —A, and
A, <m. Also

{Iatar = i — (n—=1) (01 +0), Ag+ay +ag, Ag oy +ag, ooy Ay oy + ot = {A}g, 1)

where m—Ay,—a, >a,> —A,—a;, which is m— A, >, +ay > —A,,.

(i) {A}p, = {2nm— (n—1) f1— A5 f1— s 1 — A1 s f1— A5}, where 1,<m and

m—]—/ln >ﬁl >’12'

{{/1}:61}:82 = {2nm— (n—1) fy—[2nm— (n—1) 1 — A1, fo—f, ‘I“/Iz,ﬁz_—ﬁl + 235 s Bo—F1 A0}
where m-+f, —,=fy =, —A,, giving m—2A,>fF,—f; = —A,. Hence

st = = (n=1) (Bo=51)s A+ (By=F1)s ds+(Bo=F1)s o5 At (Ba— 1)} = {0,y

(i) {{A.}p = {2nm—(n—1) =2, +(n—1) @, f—A,—, f—A,_1—a, ..., f—A,—a}, where
m+A,+a=pf=2,+a. Hence {{A},}; = {A};_,, where m+21,=>f—a>2,.

(iv) {ge = (2nm—(n—1) (B4a) = A, B+ a—Ap fta—Ap 1y s BHa—A5} = {Mip

where m-+1,>a-+f=A,.

Results additional to theorems 2 and 3 would be needed to give the coefficients of the
remaining types of S-function in the general case {m}", but for n = 4 the following theorem
covers all the outstanding cases:

TrEOREM 5. If {A} = {Ay, Ay, Ay, A}, where g = m—+k, Ay =m—1, and m=1, k=0, then
(i) if k<l+1,
Dy}t = A=Ay +1) (y—Ay+1) (g -2) —2k(E+1) (43—, +1);
(i) if k>1+1,
Dy}t = Y= A4+ 1) (A1) (g +2) —2k(k+1) (ly— A4+ 1)
+(k—1—1) (k—1) (k—I1+1).
Proof. The coeflicient of {£,, £,, £} in {m}® has been shown by Thrall (1942) to be
min (1 +§1‘“§2a 1+£,—E)

or equivalently, is 1 +&, —&,if§,>m, and is 1 +§,— &3 if§, <m. Let{§}, §,, &5} be an S-function
such that the product {£;, &,, &} {m} contains {A;,1,,13,4,}. Then
om—k+1—A,=E=>mtk=E>m—1>E>,.

(a) Take &, = m—I+r, where r=0,1,2,...,0. Then § 4§ = 2m+1—7, anc} the least
value of £, is max (2m+I—r—2m-+k—I+A,1,), which may be written as A+ ((k—r)),
where the double brackets mean that the number contained by them is to be taken as zero
when it is negative. Similarly, the greatest value of £; is ;— ((k—2[+7)).
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Using Thrall’s result, the sum of the coefficients of the S-functions {£,, £,, £;} which con-
tribute to {A;, A5, 43,4,} and which have §,<<m is the sum of the consecutive integers from
L+ (A3+7) —[A3— ((k—20+7))] to 1+ (A3+7) — [A,+ ((k—7r))] inclusive, this sum being then
summed from 7 = 0 to r = I. For a fixed 7, the sum of the consecutive integers is

A=A r4+1— ((B—7) ] [As— A4 +7+2—((k—1))]
—3[r+((k—2047)] [r+1+((k—20+1))].
The sum of these expressions from 7 = 0 to » = [ depends on whether £ is greater or less
than /. When £</, the sum is

5.2 (A=A, + 124 (=4, +1) (2r+ 1] = (4 =A+1) 3 (k1)

r=

+5 3 (k=2 (k=1) (2r+1)]

= (A=A +1) [(A3—A,+1+2) (1 +1) —k(k+1)]. (1)
When £>1, the sum is

5.2 A=A+ 1%+ (A=A, +1) (2 1] = (4=, +1) 3 (k1)

| +%é0[(k—’)2-- (k—7) (2r+ 1)]—%rzzﬁl_k[(lc-——2l+r)2+(k——2l+r) (2r+1)]

$(A3—= A+ 1) (43— +1+42) (14+1) =5 (43— A, +1) ((+1) (2k—1)
+3(k—=0) (k—1-1) (I+1)—%(k=10) (k—14+1) (I+1)

D) [(—=A+1) —2(k—=1)] (A, —2,+2)
(1) (4 —2+1) (43— 24,+2). (2)

(b) Take &, = m+s+1,wheres = 0,1,2,...,k—1. Then &, +§; = 2m—s—1, and theleast
value of &, is max [m+k,2m—s—1— (m—I{)], which can be written as A,+ (({—k—s—1)).
Similarly, the greatest value of £, is A, — (({—k+s+1)). Since &,>m, the alternative form of
Thrall’s lemma is applied to every {£,, £,, &5} with £, = m+s+ 1, giving the sum, for a given s,
of the consecutive integers from
1+, +(((—k—s—1))—(m+s+1) to 14+, —((I—k+s+1))—(m+s+1)

inclusive. This sum is

Sy —m—s— (((—k+s+1)] [ —m—s+1—(([—k+s+1))]
—4k—s—14+(({—k—s—1))] [f—s+ (({—k—s5—1))].
The summation of this expression from s = 0 to £—1 again depends on the relative magni-

tudes of £ and /.
When k>, the sum is

Il

I

1%-1 1k=1
IS mm=) Qy=m—s1) LS (h—s—1) (k—9)
5=0 s=0

k-1 k-1
-—% S 1(2/11——2m~2s+1)(l——k+s+1)+% S (I—k+s+1)2

s=h—j- s=k—i—1
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which reduces to

(A —m+1) (4 —m+1—k) —§(I+1) (4, —m) +3{(1+1) (k—1)

A, —+1) [(A,—2 +k+l)k [(I+1)]. (3)
When £</, the sum is

1%5-1 J1%k-1
= Z Ay —m—s) (4, —m—s+ 1)—~ Z (k—s—1) (k—s)
_1'3 (24— 2m—25-+1) (I—k-+541) + & z (I—k+s5+1)
k-1 1i-k—

—g 3 (—h—s=1)(2h-25-1)—5 3 l—k—s—1)2

= —%—k(/ll—m—{—l) (A4, —m~+1—k)—3k(A,—m+ 1) (21~—k+1)+%k(k+1) (20—k)
= (A =2+ 1) (A, —Ay+1+k) —3k(A, —A,+ 1) (20 —k+ 1) +k({—k)
= (A, — A, +1—2[+2k) (A;—A,)
= (A3 — A4+ 1) (4, —1y). | (4)
This resultis clearly valid for £ = /, since substituting £ = /in (3) gives (4, —1,+1) (4;—1,)
which agrees with (4) when £ = /.
Hence, combining (1) and (4), the coefficient of {A} in {m}*, when A<, is
$(A3— A +1) [(m—A4+2) (m—A3+1) —k(k+1) +£(4, —15)]
= 34—+ 1) [(A—=A4+2—k) (= A3+ L —F) —R(R+ 1) +£(4, —4,)]
= 3=+ 1) [(Ap =24 +2) (= A3+ 1) —A(24,— A3 — A4+ 3) —k+E(, —1,)]
= (A=A +1) [ = A4 +2) (A, — A3+ 1) —4h(k+1)]. (5)
Similarly, combining (2) and (3), the coeflicient of {A}, when £>1, is

A =24+ 1) [(Ag—Ag+1) (1) +1 =82+ £24-k(4, =1, 4-1)]
=3 =+ 1) [(A3—A+1) (I41)+ 1 =2+ R4+ k(Ag—A,+ 1) +2k(I—k)]
=3, =+ 1) [(Ag—2A4+1) (Ay—2A5+1) +1—(I—k)?]
(At 2) (L 3h— D) [y —Ay 1) (g + 1) +1— (1—h)7]
= LAy—A+2) (A3—A+1) (Aa— A3+ 1) +FA;—A+1) ({—8k—1) (I+£+1)
+3 (4 — A+ 1) [1—(1—k)?]
= 1(A,—2,+2) (/I3~/14+ 1) (Ag—A3+1)+3(A3—2A,+1) (I2—2k]—3k2—4k—1)
+3H (=2 +1) +2(=R)] [1—-(—4)7]
= §(A—A4+2) (3= A4 +1) (L —A5+1) —2(43— A4+ 1) k(k+1)
+(k—=1-1) (k=1) (k—1+1). ‘ (6)
Since (5) and (6) differ only in respect of the extra product (k—[—1) (k—I) (k—I[+1),
(5) will hold for £</+1, and (6) for £>[+-1. This completes the proof of the theorem.
Itis of some interest to conjecture general results of which those given above are particular

cases. Examination of a number of numerical cases suggests that for n = 5,
(1) if {} = {A, m+k,m—1, A4, A5}, where m>k, [=>0 and £</, then

DmP = F5(A—23+1) (=24 +2) (A —A5+3) (A3 —2A4+1) (A3—2A5-+2) (44— 2;+1)

5k(k+1) (k+2
SRR RER) 3 0 d1) (g +2) (=2 +1);
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(ii) if {A} = {A;,m+k,m—1,m=7j,A;}, where k=1, then to the foregoing expression for
D,{m}* must be added

e[ (k—1438) (k—14+2) (k—I+1) (k—1) (k—1—1) (A,—A;+1)
— (k=j+2) (k—j+1) (k=) (k—j—1) (-—j—2) (A4—2;+2)
— (k=1 +2) (k== + 1) (k=1 =) (k=1 —j—1) (k=1 —j—2) ({4 =44+ 1)],

where any negative terms in the products are regarded as zeros.
The generalization of (i) would appear to be thatif {A} = {A,,m+£&,m—1,A,, ...,A,}, where
m=k, [>0 and k<!, then

IT (A, ~A,—7+s)

Dyjmyr = 7

\ n ]._n£ (/lr——/ls_r_l—s)
(n—2)! (n—3)!... 1! (n—2)

REL) e (B n=8) e =T

where 7 <s.

A complete generalization of (ii) would probably be complicated. No proofs of these
conjectures have as yet been obtained, but they have been found to give correct results in
a large number of numerical cases, and it appears likely that such generalizations of
theorem 5 do exist.

4. EvaruvatioN oF D,{m}? {m}?

THEOREM 6. If (1) = (A}, Ay, A5,4,) is a partition of 4m, then Dy{m}*{m}® =+ (N,—N,),
where N, and N, are the numbers of even and odd integers respectively in the ranges specified by table 1,
and the sign is given by the last column of the table. For all S-functions {A} not specified in the table
the result is zero.

TABLE 1
range for even p range for odd p
AL A, A A, ‘minimum of maximum of ' minimum of maximun? of sign
e e e e  2m—AgA,m 2m— Ay, A, m 2m+1—2Ay A3+1  +
0000 m 2m+1—2y A3+1  2m—2Ay, Ay, m 2m—Ay, Ay +
00 ¢ee 2m—Aym 2m+1—2A,, Ay Agym 2m—A;, Ag+1 -
ee o0 o0 Aym 2m—A, Ag+1 2m—Ag, m 2m+1—2y, A4 -
oeeo m 2m+2—2A3, Ap+2  2m—A,—1,A;—1,m  2m—2A;, A, —
eo0o o0 e 2m—2,—1,A—1,m 2m—A;, A, m 2m+2—2A3 A+2 —

Proof. Since {m}? = {2m}+{2m—1,1}+{2m—2, 2} + ... +{m?}, then
DA1—2m+p D/l,+1—p DA1+2 D/\1+3
DmP{m}® =3 Dy, 1-2mep
ho-2-2mip Dig-1-p Dag Dig
Dy -s-omip Dr2-p Dayr Dy
= ;Ap{m}@),

where the range for p giving non-zero A, is max (0, 2m—A,) <p<min (1, m).

The next step in the procedure (Foulkes 1949) is to divide every even suffix in each A, by
2 and to regard every D with an odd suffix as a zero element of the determinant. The result
now depends on the parities of A;, 1,25, 1, and p.

» Dunr Dy {(m)®

VoL. 246. A. 71
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564 H. O. FOULKES ON THE

(1) Ay, Ay, As, Ay all even
If p is even,
@ ©)
DRy, -2m+ : D@y
@ @
Dy, . D, 19

(2) (2)
D%(A3~2—2m+17) ° D%‘)\a .

(2) (2)
Dé(/\4~2—‘b) . A4

A, =

This determinant operating on {m}® will give a zero result if every suffix is positive or
zero, since each operator may be replaced by a unit as far as the final result is concerned.
It will give 41 if, and only if, all the conditions

A—2—2m—4p<0, A,—2—p<0, ,—2m+p=0, l—p=0
are satisfied, that is, when

min (2m+1—A2A3, Ay, m) =p>max (2m—2A;,,—1,0),

A A

SOCIETY

which is equivalent to
. . min (2m—2A4, 1y, m) =p>max (2m—2A;, 4,), (7
since p 1s even.
'The determinant A, can never give rise to —1 when p is even. Hence every even value of
p in the above range gives a A, which leads to +1 in D,{m}? {m}@®.
When p is odd,

OF

Difyis1-p  DiRysn
p | Poran . DR
Difyy-1-p D, :
Dfhs-s5-2mep : : D,
This determinant operating on {m}® will give a zero result unless
L1—p=0, ly—1—2mtp=0, Ay—1—p<0, A,—3—2m+p<0,
in which case it will give —1. Hence every odd value of p in the range
min (2m+2—2A,4,+1,m)=p>max (2m+1—2»,, 13, 0)
gives —1 in D,{m}?{m}®. This range reduces to

m=p>=max (2m+1—2y, 3+1). (8)

)

y
S

Hence when 1, A,, A5, 1, are all even, D\{m}? {m}® = N,— N, where N,, N, are respectively
the number of even integers, including zero, satisfying (7), and the number of odd integers
satisfying (8).

(1) Ay, A9, A5, Ay all odd

An analogous argument leads to the result that in this case Dy{m}?{m}® = N,— N,, where
N, is the number of even integers satisfying (8), and N, is the number of odd integers
satisfying (7). Repetition of the argument for all the possible cases of odd and even 4; gives
the required result.

As a simple example take m = 6 and {1} = {12.75}. The last row of table 1 gives

min (4, 4, 6) >p,>max (0,0) and 6>p,>max(9,9),
so that N, = 3 and N, = 0, giving the coefficient of {12.75} in {6}2{6}® as —3.

SOCIETY

OF
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THEOREM 7. Dy, 11 2,41, 2541, ager{m+ 112 {m 4 1} = — Dy{mj? {m}®.

Proof. The addition of a unit to each part of {1} changes the parity of each part. Table 1
shows that this implies that the ranges for odd and even p are interchanged. Further, the
upper and lower bounds are in all cases increased by unity when 4,41 and m+ 1 are written
instead of A; and m respectively. Hence N,— N, for

AL 41,5+ 1,4, 41}
in {m-+132 {m+1}? is that of {d;, 1,5, 5,4} in {m}? {m}® with sign reversed.
THEOREM 8. If A, <2m, and
{om—A} = {2m— A, 2m— g, 2m— Ay, 2m—A,}, then D,,_5{m}?{m}® = D,{m}? {m}®.

Proof. The parities of the four parts of {2m— 1} are the same as those of 1;,4,, A5, 4, in all
ekcept the two middle rows of the table, in which they are reversed. Replacing 4,,4,, 15,4,
in the table by 2m —A,, 2m —A,, 2m—A,, 2m— A, interchanges the two middle rows but leaves
the others unaltered. The theorem follows.

THEOREM 9. If A, <<m, then

Dy{mj* {m}‘z’

I

(Ag—A4+2) if Aoy A5, A4 are ey e, e,
—31(Ag—A4+2) if Ay, A5, A4 are 0,0, 0,
(Ag—A3+1) if Ay, A5, A4 are 0, e, ¢,
—3(A—A3+1) tf Ay, A5, A4 are ¢, 0,0,
( )
—%(

l

il

Ag— A+ 1) if Ay, A5, A4 are ey e, 0,
Ag—A,+1) if Ay, A5, A4 are 0,0, ¢,

= 0 in all other cases.

m])-a DOf mb—- DO wh—- DO

Proof. Writing the rows in the same order, table 1 now reduces to table 2, from which the
theorem is evident.

TABLE 2

range for even p range for odd p N, N, sign
A 2p >Ny m>p>2m+1-2, 32— A4 +2) 0 i
m=p>2m4+1-2, A= P2y 0 (A=A +2) +
m>p>2m+1-2, N=p=A+1 0 (A —Ag+1) -
A=p>2+1 m2p>dm+1-2, $(A—A5+1) 0 -
m>p>2mt2— A A—12p>A, 0 HAs =2y +1) -
Ag—12p2A, mZpz2m+2—2A, FA3—A+1) 0 -

Cororrary 1. If {4}, = (A, — 3, Ay +a, g+, A, +ac}, where 1, <m and m—A,=>a> —A,,
then D, {m (m}® — (—1)* Dy} fm}.
Proof. If « is even, the parities of the four parts of {4}, are the same as those of 1;, 45, 3,1,

respectively. If a is odd, the parities are reversed. This, with the above theorem, proves the
corollary.

CoroLLARY 2. If A} = {8m—3f—Ay, f— Ay, f— 3, f— A5},
where ly<m and m+2A,=>[= Ay, then Dy, {m}* {m}® = (—1)# Dy{m}* {m}®.
COROLLARY 3. If A,<m, m—Ay,=a> —A, and A\ — 3a<2m, then
D3, my? {m}® = (—1)* Dy{m}* {m}®.

71-2


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

566 H. O. FOULKES ON THE
COROLLARY 4. If l,<m, m+A,=f=A,, and 1,=3(2m—f), then
Doy {m? {mf® = (—1) Dyfm}?* {m}.
CoROLLARY 5. If 4, <m, then D, 4 1, 2, aim—+112 {m+1}@ = D, {m}? {m}®.
5. EvavruvatioN ofF D {m} {m}»-1

THEOREM 10. Dy{m} {m}*»=D = 1,0, or —1.
Proof.

DAI“’” D?t1+1 D/\|+n—1
DAZ’m‘l D;\z D/\2+n—2

Dy{m} {m}n=b = e e,
‘D)\n—x—m—n ‘DA,,..l—n+l D/\,,_.1+1
‘D/\n—m—n+1 D/\,,—n+2 DA,,

The only D operators which matter are those with suffixes divisible by z— 1. In each row,
one and only one of the suffixes in the last —1 columns is divisible by n—1. Several
suffixes in the first column may be divisible by n— 1. Hence D,{m} {m}*~V is the numerical
value of a determinant which may have some units in its first column, the remaining
elements in this column being zeros, and the remaining #—1 columns are such that they
have one unit in each row, the remaining elements in the row being zeros. Such a deter-
minant must have one of the values 1, 0, —1. ‘

The particular value to be taken when z = 4 is given by the following theorem, due to
Duncan (19524a):

TueoreM 11. Dy{m}{m}® = 1,0, —1 according as D,{m}*=1,0, —1 (mod 3).

Proof. From §2, D[y {m}*+ 8% {m} {m}¥] =0 (mod 3). When (x) = (4), x{¥ =x# =1,
and so D,{m}*=D,{m} {m}® (mod 3).

This is extended to the case when n—1 is a prime by the following theorem:

THEOREM 12. If n—1 is prime, Dy{m}"= D\{m} {m}*~D (mod n—1).

Proof. The order of any class p = (142 3¢ ...) of the symmetric group of order »! is (Little-
wood 1950, p. 40) 2!

hy = ez s
When p = (1,n—1), then £, = n(n—2)!, and since (n—2)! = —1 (mod n—1), when n—1 is
prime, then #,= —1 (mod n—1). When p is any class other than the identity or (1,z—1),
h, will necessarily be divisible by n—1, since none of ¢, , c, ... will equal n—1 or will contain
n—1 as a factor. The theorem follows.

It is necessary to obtain some criteria to decide which of the values —1, 0, 1 to take inany
case not covered by the last theorem. Numerical cases are easily dealt with. Thus, if the
coeflicient of {4321} in {3} {3}® is required, the procedure is as follows:

D, D, D, D, D, D, D, D, D, D,
Dy D, D; Dy D, D, D, D; Dy D

DA{3} {3}(4) =| D, D3 D, D D {3} {3}(4) = Dy, D, D; D, {3}(4)-
D, D, D, D, D, D, D, D,
D, D, D, D,
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Every D, with a suffix divisible by 4 is now put equal to unity, and every other D, is replaced
by zero. The required coefficient is thus

The required criteria in the general case are obtained by considering the various types of
determinant which may arise in this way. They are embodied in the following theorem.:

THEOREM 13. (i) If the sequence 1, —1,,—2, ...,A,—n (modn—1) does not contain a com-
plete set of residues mod n—1, then Dy{m} {m}*=V = 0.

(11) If the sequence in (1) contains a complete set of residues (mod n— 1), and the two equal residues
which necessarily occur correspond to A, —r and A;—s, then D\{m}{m}*=V = 0 if A, —r+1—m and
Ay —$+1—m have the same sign, zero being regarded as positive.

(i) If ,,—r+1—m=0(modn—1) and is non-negative, and A;—s+1—m=0 (modn—1)
and is negative, then D\{m}{m}®=D = (—1)s*0 where 0 is 0 or 1 according as the sequence in (i),
deprived of A, —s, is a positive or negative permutation of 0,n—2,n—3, ..., 2, 1.

Proof. (i) In this case, if p is missing from the complete residue system, then none of
A,—r—p,forr=1,2,...,n, will be divisible by n— 1, and so the final determinant will have
a column of zeros in the gth place, where 2<¢<n and ¢= —p (modn—1).

(ii) If A,—r=A,—s=x (modn—1), then since the sequence in (i) has a complete set of
residues mod n—1, it follows that

M4+ 23+ oo +4,=1424+ ...+ 14+ 0+14+2+...+n—2+4+x (modn—1).
Hence nm=x-+n(modn—1), and
A—r+1—m=A—s+1—m=x+1—m=0 (modn—1).

If A, —r+1—m and A;—s+1—m are both negative, the final determinant will have its first
column consisting entirely of zeros. If they are both positive, the two units which appear in
the rth and sth rows of the first column can be eliminated by subtraction of columns. In
either case the value of the determinant is zero.

(iii) By subtracting appropriate columns from the first column, the latter reduces to
a column of zeros except for —1 in the sth row. The minor of this element will be +1 or —1
according as A, —1,4,—2,...,A,_—s+ 1,4, —s—1,...,4,—n(modn—1), is a positive or
a negative permutation of 0, n—2, n—3, ..., 2, 1. The result follows.

CoroLLARY 1. (i) When Ay<m, then D\{m}{m}»=D = 0 if ;#m (modn—1), or if 1,—2,
A3—38, ..., A, —n is not a complete set of residues (modn—1).

(i) When Ay<m, and A;=m (modn—1), then D\{m}{m}®»=V is +1 or —1 according as
Ay—2,23—3, ...,A,—n (mod n—1) is a positive or negative permutation of 0, n—2, n—3, ..., 2, 1.

CIOROLLARY 2. If L, <m, then

Di i, 20, 2,00, 2,4 A L{mA- 1J07D = Dyfm} {0,
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TuaeorEM 14. D,,_5{m}{m}*=V = D,{m}{m}=~D.

Proof. (i) 2m—2A,_ ;. —t =2m—2—[A,_,,;— (n—t+1)]—(n—1), and so if the sequence
A,—t, mod n—1, does not contain a complete residue system, then neither does the sequence
2m—A,_,—t.

(i) Also, if one of the sequences.does contain a complete residue system mod z— 1 so does
the other. Further, if 1¥ denotes 2m—A2,,_,,, then

M —(n—r+ 1)+ (1—m) = 2m—A,—n+r—m = (1—n) —[A,—r+ (1 —m)].
IfA,—7r+(1—m) = k(n—1), then
R o1 — (n—r1) + (1=m) = — (a—1) (k+1).

Hence A%, ,—(n—r+1)+ (1—m) isanegative or a non-negative multiple of 7 —1 according
as 4,—r+(1—m) is a non-negative or negative multiple of z—1. Hence if the first column
of D,{m}{m}»~D can be reduced to zeros, so can the first column of D,,,_z{m} {m}®~b.

(iii) If A,—r+(1—m)=A,—s+(1—m)=0 (modn—1), the former being non-negative
and the latter negative, then by (ii) above,

B ——r+1)+Q—m)=A¥  —(n—s+1)+(1—m)=0 (modn—1),

the first expression being negative and the second non-negative. The sequence A —t,
t=1,2,..,n—r,n—r+2,...,n1s the same as the sequence

om—2—[A,_;,,—(n—t+1)] (modn—1),
and its parity has to be compared with that of
L—1,—2, . A s+ 1,4, —s—1,...,4,—n (modr—1).

A cyclic permutation of order s—r is introduced when A, —s is reintroduced to the latter
sequence and A,—r is withdrawn. This gives a sign change of (—1)*~"~1. The addition of
2m—2 has no effect on the relative parity. Replacing A,—¢ by A, ;,,,—(n—t+1) gives
1(n—1) transpositions when 7 is odd, and §(r—2) when 7 is even. Reversing the sign of
A, — (n—t+1) gives §(n—3) transpositions when 7 is odd, and §(n—2) transpositions if
n is even. The two operations, of replacement and reversal of sign, together give a sign
change of (—1)" whether 7 is odd or even.

Finally, expanding the determinant from the (z—r+1)th unit in the first column instead
of from the sth gives a change of sign of (—1)*"*1-s, The total change of sign involved in
passing from one residue system to the other is thus (—1)sr-1*m+n=r*1=s — 4 1. Hence
D, _3{ri} {m= — Dyfom fm).

THEOREM 15. Dy 11, pget,..., a1t +1}H{m+1}070 = (—1)" Dy{m} {m}=D.

Proof. The determinants Dy, ,; »,41..... a,1{m+ 1} and Dy{m} have the same first column,
and the addition of a unit to every suffix in the remaining columns of D,{m} is equivalent, in
the final stage of the evaluation of the determinant, to a cyclic permutation of these n—1
columns. This gives rise to the term (—1)”, and so the result follows by theorem 13.

THEOREM 16. If L,<m and m—A,=a= —A,, then Dy {m}{m}n=b = (—1)"* Dyfm} {m}®~D.
Proof. The addition of a unit to each of 4, —r, for r = 2,3, ..., 7, is ultimately equivalent

to a cyclic permutation of the last n— 1 columns and so gives a change of sign of (—1)". The
addition of & gives the sign (— 1), This, with theorem 13, corollary 1, proves the theorem.
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CoroLLARY 1. If L,<m, m—A,=>a>=>—A, and A, — (n—1) a<<2m, then
D3,y {m}=D = (—1)"* Dy{mj {m}=.

TueorEM 17. If ,<m and m+A,=F=A,, then Dyyim}{m}®=D = (—1)" Dy{m} {m}®D.
Proof. A =2nmm—(n—1) f—A,

=(2n—2)m+2m—A, (modrn—1)

=2m—A, (modnrn—1).

Hence 1, 1] are both congruent to m, or both non-congruent to m (modn—1). If

A—r(r=2,3,...,n)

A A

is not a complete set of residues (mod n—1), neither is A, —r, for r = 2, 3, ..., n, since
/1;_7 = /9*-/1”_,4_2—7’ = ﬂ_ [An—r-f-z_ (72—7'—[—2)] —n—2.

If A, —r does give a complete set of residues, then so does A;,—r. The change of the set A, —r
into the set A,_,,,— (n—7r-+2) arises from }(n—1) transpositions when 7 is odd, and from
$(n—2) transpositions when 7 is even. The reversal of sign of A,,_,,,— (n—r+2) is effected
by 1(r—3) transpositions when 7 is odd, and by }(z—2) transpositions when # is even. The
resultant change of sign due to the two operations is thus (—1)?, for both even and odd =.
The addition of f/— 3 gives a cyclic permutation of order n—1 performed f— 3 times on the
residues, and so gives a sign change of (—1)"#-D. Hence the total change of parity between
A,—r and A, —ris (—1)"A. This, with theorem 13, corollary 1, proves the theorem.

CoRrOLLARY 1. If A, <m, m+A,=F=,, and (n—1) (2m—pf) <A,, then
Dy, i} e~ = (—1)" Dyfm} {m}n=V.

SOCIETY

OF

6. Evaruation oF D, {m}® {m}®
THEOREM 18.

D {m}@{m}® = min [1(, —;+2), $(A,— A, +2)] when A;, Ay, A5, A4 are 0,0,0,0 or e, e, ¢, e,
= —3(Ay—A5+1) when A, Ay, 5,4, are 0,0, ¢, ¢, or e, e, 0,0,
= —min [$(A; —A,+1), $(A;— A4 +1)] when Ay, A5, A3, 4, are 0, ¢, ¢, 0,07 ¢, 0,0, ¢,

= 0, otherwise.

) ¢

S

Proof. Suppose first that all of 1, 4,, 4;, 4, are even. Then
DR, - DRuio

DR, . Df
Dfy-n - D3,

- Do ~ D3,
= DR, 12, DR,, i m}® {m}®.

The product {m}{m} will give those S-functions {2m}, {2m—1,1}, {2m—2,2},...,{m, m}
corresponding to all one-rowed and two-rowed partitions of 2m. The only significant

operators occurring in DR ;. DR, ,,, are thus those which belong to S-functions having
one or two rows. Consider the product {p, ¢}{r, s}, where p, ¢,7,s are non-negative and

Dy} ) =

SOCIETY

OF
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p=qgandr=s. Ifr—s<p—gq, then the Littlewood-Richardson rule shows that the number of
S-functions corresponding to one- and two-rowed partitions in the product is r—s-+1, and
is p—q+1 when r—s>p—q. Hence when A, 1,, 45,1, are even,

Dy{m}® {m}® = min [§(, —23+2), }(1,— A, +2)].
Similarly, when A, 1,, 45, 4, are odd,

Dy {m}® {m}® = ‘Dg)kﬁl), g+ D 'D‘(%2()/\2'1), %(A4—1){m}(2) {m}®

= min [3(4, —43+2), (4, =4, +2)].

When 7,, 4, are odd, and A;, 4, are even,

(2) (2)
* Dé(/\ﬁ-l) . D‘}(/\1+3)
D D2

9 9 3(Ag—1) #A2+1) . 9 2
Dfm®{m}® = ) D@ {m}® {m}®

3A3—-2) A3 .

(2) (2)
‘D%(/\4"2) . D%/L;

=—DR, 111, 1 PR, 12, M} {m}®
= —min [$(A; —A4+3),$(A,— A3+ 1)]
=— 34— +1).
Consideration of the various cases that arise leads in a similar way to the remaining results
stated in the theorem.
COROLLARY 1. Dy 1y 241, 2941, ager{m+ 1@ {m+ 1} = Dy {m}® {m}®.
COROLLARY 2. If A, <2m, then Dy,,_», om-1s, 2m-2s, 2m-2 @ {m}@ = Dy{m}® {m}®.
CoROLLARY 3. If l,<m,
D {m}@ {m}® = $(A,—A,+2) when Ay, A3, A4 are 0,0,0 or ¢, ¢, ¢,
= —3(Ay—A5+1) when Ay, A3, A, are o, ¢, ¢ or ¢, 0,0,
= —3(A3—A,+1) when Ay, A3, A, are e, e,0 or 0,0, ¢,
= 0, otherwise.
CoROLLARY 4. If l,<m, then Dy .4 1, 2, 2, im~+ 1@ {m—+1}® = D) {m}® {m}®.
COROLLARY 5. With the conditions of the corollaries of theorem 9 on Ay, Ay, Agy Ay, @, f, then

D, fm}® {m}® = Dy {m}® {m}® = D, fm}® {m}® = Dy, _3,{m}® {m}® = Dy {m}@{m}®.

7. EvALuATION OF D, {m}®

Methods of determining this coefficient have been given by Todd (1949), Duncan (1952 5),
Littlewood (1951) and Foulkes (1951). Use of the operator technique gives the following
simple means of finding the coefficient of {A} in {m}® S,. This result and the first corollary
have previously been obtained by Todd (1949).

THEOREM 19. D{m}® = 0, if A, —r=A,—s(modn), for some r,s,
= +1, according as 1,1, —1,3—2, ..., A,—n—+1 (mod ) form an

even or an odd permutation of O,n—1,n—2, ...,2, 1.
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Proof. In the determinant form of D,, one and only one suffix in each row will be divisible
by n. Dy{m}® will be zero if and only if two suffixes in the same column are divisible by #,
that is, if and only if 7, s exist such that A, —r=21,—s (mod n).

Suppose A;,,—1, A3—2, ...,4,—n+1 (mod n) are 0,n—1,n—2, ..., 1 in this order. Then

Dy{m}® = diag (D> Difins -+ Difoya) {mj® = 1.

IfA,4,—1,43—2,...,4,—n+1 (mod n) are, say, 0,n—2, n—1, n—3, ..., 1 in this order, then

(n)
DE vy

A A

(n)
D& 1yin . {m)®
(n)
D/h/n

(n)
D/{:,/n

The same argument applies if A;,4,—1,...,A4,—n-+1 (mod r) is any permutation of the
residues 0, —1, n—2, ..., 1, the parity of this permutation being the same as that of the
permutation determinant obtained by replacing every non-zero element of the operator
determinant by a unit. The theorem follows.

CoroLLARY 1. DA1+1, Ag+1,ee, An+1{m + 1}(n) = (_ 1)"-1 DA{m}(n)'

Proof. The addition of a unit to each 4, gives a cyclic permutation of order # to the residues
and so gives the factor (—1)""1.

COROLLARY 2. D) ., 3, a..... 1, im 4 1}® = Dy{m}®.

Note that the condition A, <m, required in previous results relating to {A, +n, 15, A3, ..., 4,},
is not required here.

OF

COROLLARY 3. If a partition (1) of non-increasing parts can be obtained from (X) by adding n to
one part and subtracting n from another, then D {m}™ = D,{m}®.

COROLLARY 4. If ;+-n<Ai_y, then Dy, 5, . aioy ditn, Aisg,oen, 2300 1@ = Dy{m}®.

CoRrROLLARY 5. D,,_5{m}® = D, {m}®.
Proof. Writing {A\}* = {2m—A,, ..., 2m—A}, then

) ¢

S

Bf—r=2m—2A,_, ., —7=2m—n—[A,_, ., —(n—r+1)]—1.

Changing A, —r into A,_,,;— (n—7+1) involves }(n—1) transpositions when 7 is odd and
in when n is even. Reversal of the sign of A,_,,; —(n—7+1) involves 3(n—1) transpositions
when 7 is odd, and %(n—2) when 7 is even. The subtraction of a unit introduces a cyclic
permutation of order 7 into the residues and gives a sign of (—1)"~1. The result of all the
changes of sign is positive in each case.

SOCIETY

Corotrary 6. If - (h—A))>a>—1, and (G, =~ (n—1) 6, A3t o0, A, 5, then

D, ) = (—1)0=D= D,
Note that the conditions A,<m, ,<<m—a are not required ; the only limitation on « is
that {A}, should have all its parts positive and in descending order.

OF

Vor. 246. A. v2
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CoroLLARY 7. If 2m—% (A, —A,) =f=Ny, and

{/1};3 = {an_‘ (72—— 1) /b)_/{bﬂ__/lmﬁ_/ln—ls '“aﬁ_’lz}a
then Dy 1 {m}® = (—1)¢=DF Dy {m}®.

Progf. The residues mod n are now those of f—A;, f—A,— 1, f—A,_;,—2, ..., f—Ay—n+1.
To obtain A;,4,,4,_1, --., A, from A, 4, ..., A, requires ¥(z—1) transpositions when 7 is odd,
and 1(n—2) when 7 is even. Reversal of signs throughout requires §(n—1) transpositions
when 7 is odd and }(n—2) when 7 is even. The resultant change of sign is thus nil in either
case. Addition of § gives the additional sign (—1)®~DZA, k

The limitations on / are merely to ensure that A;>>1; and A;,>0; they are less stringent
than those associated with {1}, in previous results in this paper.

CloroLLARY 8. If - ({y—;) >0 —A,, and &y~ (n—1) a<2m, and

2m—1} = {2m—2A,—a,2m—2A,_ —a, ...,2m—A;+ (n—1) a},
then Dy 3 i} = (—1)0=D% Dy,

COROLLARY 9. If2m——% (A, —=A,) =f=y, and A, = (n—1) (2m—f), and

2m—A} = {2m—f+ Ay, 2m—F+ A5, ..., 2m—f4-1,, 4, — (2m—f) (n—1)},
then Dy,,_xim}® = (—1)e=D2 D, {m}®.
TueorREM 20. If nis prime, D\{m}" = D,{m}" (mod n).
Proof. The order of the class p = (142%3¢...) of the symmetric group of order 7! is
h, = n![(1°2"3°...alblc! ...).
When p = (n), h,=(n—1)!, and since (n—1)!=—1(modn) when 7 is prime, then

h,=—1 (mod n). When p is any class other than (1") or (n), 4, will be divisible by n. The

theorem follows.
CororLLARY. If nis prime, D\{m}*=1,0, —1 (mod ).

8. SOME RELATED COEFFICIENTS IN THE SAME OR THE CONJUGATE FOURTH-ORDER
PLETHYSM, AND IN SUCCESSIVE FOURTH~-ORDER PLETHYSMS

THEOREM 21. If {A}, denotes any of the S-functions {X}5, {A}y, {2m—A,}, {2m—A}} as defined in
the corollaries to theorem 9, then
D, {m}® {u} = Dim}® {u} when 0 is even,

= D\{m}® {i} when 0 is odd,
where (1) is any partition of 4.

Proof. It has been proved that
D, fm}t = Difmt, D, fm}* {m)® = (—1)° Dy{m}? {m}®,
Dy, {m} {m}® = Dfm}{m}®, D, fm}® {m}® = Dyfm}® {m)®, - D, {m}® = (—1)° Dy{m}®.

Collecting these results into the expression for {m}® {4} given in §2, and reference to the
table of group characters for n = 4, suffices to prove the theorem.


http://rsta.royalsocietypublishing.org/

a
A Y
A \

/%

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I~
b \

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PLETHYSM OF S-FUNCTIONS 573

The following are some simple special cases:
CoroLLARY 1. If A, <2m,

Doy a4, 26m-1s, 2m-2g, 2m-2,4M} ® {1} = Dyfm}® {u}.
CoROLLARY 2. If A,<m,

D,y agt 25+ 24y mera, mons, m-2,Am} @ {0} = Dyfm}y@ {u}  for even m,
V = D{m}e {u} jor odd m.
COROLLARY 3. If A,+A5+A,<m,
D,y 20, miag, mras, m-Gaiagean{my ® {up = Dofmy@ {u}  for even m,
= D{m}e {ii} for odd m.

Some variation is possible in the formulation of these special cases. Thus corollary 1 may

b itt
¢ writteh as D2m—a, 2m—b,c, d{m}® {Iu} = D2m—d, 2m—c, b, a{m}® {lu})

where the only restrictions on a, b, ¢, d are that all the parts in the partitions are positive and
decreasing. Corollary 2 may be written as

D3m—(b+c—a), m—a,b, c{m} ® {/‘} = D2m+(b+c—a), m—c, m—b, a{m}® {Iu}
when m is even, with a change of {x} into {#} on one side of the equation when m is odd.
Similarly, corollary 3 may be expressed as

D4m-—(a+b+c), a, b, c{m}® {lu} = Dm+a, m+b, m+c, m—(a+b+c){m} ® {ﬂ}

when m is even, with the same replacement of {4} by {}i} on one side when m is odd. Written
in this way the results show an interesting form of reciprocity associating 4m, 3m.m, 2m.2m
with m.m.m.m, 2m.m.m, 2m.2m respectively.

THEOREM 22. D) 1 3,11, 2041, mr1im+1}@ {1} = Dy{m}® {7}

Proof. This follows at once from §2 and theorems 1, 7, 15, 18 (corollary 1) and 19
(corollary 1).

THEOREM 23. If Ay<m, then Dy g 2, 2, 2im+1}0 {4} = D{m}® {u}.

Proof. This follows from §2 and theorems 2 (corollary 6), 9 (corollary 5), 13 (corollary 2),
18 (corollary 4), 19 (corollary 2).

The last three theorems are generalized to any value of zin § 10. They are of considerable
value in computative work.

9. SPECIFIC FORMULAE FOR SOME OF THE COEFFICIENTS IN {m}® {u},
WHERE (/) IS ANY PARTITION OF 4
THEOREM 24. If m=k=>0, then D,,_, {m}®{u} is given by tables 3 and 4, in which the
congruences satisfied by k are taken (mod 12).

TaBLE 3
k even

{#} k=0 k=2 or 10 k=4 or8 k=6

{4} = k2+12k+48 k2 +12k+20 k2 +12k+32 k2+12k+ 36
{31} = 32+ 12k 3k2+12k+12 3k2+12k 3k2+12k 412

22} 2= 2k% + 12k 2k2+12k+16 2k2+12k+16 2k + 12k

{212} = 3k2 3k2—12 3k? 3k2—12

{14} 2 2 P-4 k2—16 K2 +12

722
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TABLE 4
k odd

{u} k=3 k=lorb k=Tor 1l k=9

{4} 5 k2 +6k+21 k24 6k—7 k2+6k+5 k2+6k+9
{31} a= 3k2+18k+15 3k2+18k+27 3k2+18k+15 3k2+18k+27
{2%} i 2k2—18 2k%—2 2k%2—2 2k%2—18
{21%} 4 3k%2+6k+3 3k%2+6k—9 3k2+46k+3 3k246k—9
{14} &= k*—6k+9 k?—6k+5 k2—6k—7 k2 —6k+21

Proof. From the earlier theorems in this paper it is found without difficulty that
Dy, {myt = $(k+1) (£ +2),

Dy, . im}*{m}® = §(k+2) when k is even,
1(k+1) when kis odd,

Il

Dy fmy{m}® =0 when k=1 or 2 (mod 3),
=1 when =0 (mod 3),
D,,, i {m}®{m}® = }(k42) when £ is even,
— —3(k+1) when kis odd,
Dy im® =1 when k=0 (mod 4),
—1 when k=1 (mod4),

Il

=0 whenk=2or 3 (mod4).

Combining these results for the five partitions (#) and the twelve possible residues of £ gives
the tables.

CororLLarY 1. Dy, {m}® {u} = 1, when (u) = (4) and is zero otherwise.

COROLLARY 2. (i) If m is even, D, {m}® {u} = 1 for (u) = (4) and is zero otherwise.
(i) If mis odd, D,{m}® {u} = 1 for (u) = (1*) and is zero otherwise.
COROLLARY 3. Since {dm—k, k}, = {dm—k—3a, k+a, a, a}, where m— k=00, then the above

tables give Dy, ¢ sy k10, a, A1) © {4} for all even o.in this range. When o is 0dd, this coefficient is given
by Dy, Am}® {1} in the tables.

COROLLARY 4. Since {4m—k,k}y = {dm—3F+-k, B, B,/ —k}, where m=>[=Fk, then the tables
give Dy, 311 5. 5. p-imy® () for all even B, and when f is odd, this coefficient is given by

D4m—k, wm}® {i}.

The above tables, taken in conjunction with corollaries 3 and 4 and the result that
Diprs 2m2s, 2m29, 2m-213 ® {4} = Dy{m} ® {u}, which is a particular case of theorem 21, are
of considerable use in numerical computation. In {7}® {4}, for example, 76 coeflicients can
be computed from these tables, out of a total of 249. A further selection of coeflicients is
covered by the following theorem and its corollaries, the results so far obtained accounting
for all S-functions in which 1,<<m, and all those in which 1;=m.
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There is no difficulty in obtaining a specific result for the coefficient of {4m—k—r,k, 1} in
{m}® {u}, when (u) is any partition of 4, but to avoid undue prolixity the following theorem
gives results for {m}® {4} and {m}® {1*} only:

THEOREM 25. If m=k>r>0, then

() Dypororx. Am}® {4} — [ +3(k+2)+A]  when k-+2, r+1 are ¢,0,
[P +3(k+2—7r+1)+A] whenk+2,7+1 areo, o,
[ P—5(r+1)+A] when k+2, H—l are o, e,

I

ll

A A

A

:é =s4[¢+A] whenk+2,7+1 aree, ¢;

> |

2 : (i) Dypgy 5, Am}® {14 = S4[d—3(k+2) +T'] when k+2,7+1 are e, 0,

F”G = L[p—3(k+2—7+1)+T] whenk+2, 741 areo,0,
E 9) =4[ +3(r+1)+T] whenk+2,r+1 areo,e,

I

[d+TT when k+2, r+1 are e, e,

where g = 3(k+2) [(k42) — (r+1)] (r+1), and A, T" are read from the parts of table 5 above and
below the principal diagonal respectively. In the table, r+1 and k+2 are reduced (mod 12) and the
reading for A when r+1=p, k+2=gq, p>q is that of A when r+1=gq, k+2=p, with its sign
changed. Similarly the reading for I' when r+1=p, k+2=q, p<q is that of T for r+1=q and
k+2=p, with its sign changed.

PHILOSOPHICAL
TRANSACTIONS
OF

TABLE 5
w2 0 1 2 3 4 5 6 7 8 9 10 11
r4+1 >
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 14 —6 0 8 6 —6 8 0 6 2
2 0 -2 0 6 —8 —6 0 -2 0 —6 —8 6
3 0 —6 6 0 0 6 —6 0 0 6 —6 0
4 0 0 8 0 0 8 0 0 8 0 0 8
5 0 -8 —6 6 -8 0 6 —14 0 0 -2 —6
6 0 6 0 —6 0 6 0 6 0 —6 0 6
- > 7 0 —6 14 0 0 2 6 0 8 6 —6 8
<1 8 0 -8 0 0 —8 0 0 -8 0 0 —8 0
—_ 9 0 0 —6 6 0 0 —6 6 0 0 6 —6
< 10 0 6 8 —6 0 14 0 —6 8 6 0 14
— E 11 0 -—14 6 0 -8 —6 6 -8 0 -6 -2 0
@) ‘
A= Proof. From the theorems proved earlier,
= O .
=0 Dym}* = J(k—r+1) (k+2) (r+1) = 4,

D{mpP{my® = L(k+2) if k+2,7+1 aree,o,
=34[(k+2)—(r+1)] if k+2,7r+1areo,o,
=—3%(r+1) if k+2,7+1areo,e,

PHILOSOPHICAL
TRANSACTIONS
OF

=0 if k+2,7r+1aree,e.
D {m} {m}® is given by table 6.
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TABLE 6
\k+2 0 1 2 (mod 3)
741
0 0 0 0
1 0 0 1
2 0 —1 0

Dy{m}® {m}® = L(k+2) when k+2, r+1 are ¢,o,
=—4[(k+2)—(r+1)] whenk+2,r+1 areo,o,
=—3(r+1) whenk+2,7+1 areo,e,
=0 whenk-+2,7+1 aree,e.

D,{m}® is given by table 7.

TaABLE 7
“—}‘2 0 1 2 3 (mod 4)
r+1 >
0 0 0 0 0
1 0 0 1 -1
2 0 -1 0 1
3 0 1 -1 0

Hence

Dyfmy® {4} = % [Dy{m}*+ 6 Dy{m? {m}® -+ 8 Dy{m} {m}® 4 8Dy {m)® {m}®+ 6 Dy {m}®)]

_ 4i![¢+%(k+2)+8,o+60]

for £+2, r+1 even and odd respectively, where p, o are given by the foregoing tables for
D\ {m} {m}® and D,{m}® respectively. The table giving A = 8p+ 60 for all £, r is found to be
skew-symmetric and is given by the top right-hand triangle of table 5. Similarly, the number
I" = 8p— 60 occurs in D,{m}® {14}, and the table for I'is again found to be skew-symmetric,
and is given by the bottom left-hand triangle of table 5. Consideration of all possible
parities of £+2 and r+1 suffices to prove the theorem. ,

CoroLLARY. Since {4dm—k—r,k,r}, = {4m—k—r—3a,k+a,r+a,a}, where m—k>0>0,
and {4m—k—r,k, 1}y = {4m—3B+k+r,p, f—r,f —k}, where m=f >k, then

D4m——k—r—3w, k+o, r+a, oc{m} ® {4} d?’ld D4m—-3/j’+k+r, B, B-r, ﬁ—-k{m} ® {4’}

are given by (1) when a, § are even, and by (ii) when a, f are odd. Similarly

D4m—k—r——3oc, k+a, r+a, a{m}® {14} and D4m—3/;‘+k+r, B, p—r, ﬂ——k{m}® {14}

are given by (ii) when a, f§ are even, and by (i) when a, f are odd.

This theorem and its corollary, together with the equality of the coefficients of {4, 45, 13, 1,}
and {2m—A,, 2m— A3, 2m— Ay, 2m—A,} in {m} ® {4}, cover a further 67 coeflicients in {7} ® {4}.
Theorems 24 and 25 are perhaps somewhat remarkable in that the results do not involve
m explicitly, except in so far as it imposes an upper bound on £. There is no difficulty in
obtaining explicit formulae such as that for Ds,,_; ,,..{m}® {4}, but the results have to be
stated for m, k=0, 1, ..., 11 (mod 12) and are therefore somewhat lengthy. These results are
not included here.
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THEOREM 26. If k<<m, then D,y ik mi. miimy® {#} is given by table 8, in which the con-
gruences for k are taken (mod 6).

TABLE 8 ‘
mf/;’fn m{;‘id k=0 k=1 k=2 k=3 k=4 k=5
(4 a4 1 k+6 k-1 k4 k+3 k+2 k+1
(31} (212} 0 0 0 0 0 0
(2% (27} 1 % % +4 %+2 % %+4  2%+2
212} (31} 0 0 0 0 0 0
14 (4} 1 k k—1 k-2 E+3 k—4 E+1

Proof. Earlier theorems of this paper give

Dm+k, m+k, m—k, m—k{m}4 = k+ 1)
Dm+k, m+k, m—k, m—k{m}2 {m}(Z) =1 when m, k are ¢ ¢,

—1 whenm, kareo, e,
=0 otherwise,

D, ik, mik, m—k, miim}{m}® =1 when k=0 (mod 3),
=—1 when k=1 (mod 3),
=0 when /=2 (mod3),

D,k mik, met, mii@{m}® = k41,

D, ik, met, miim}® = 0 when £ is odd,
=1 whenk, maree, e,
=—1 whenk, maree, o.

Combining these results with §2 gives table 8.
THEOREM 27. If {A} = {m+ 2k, m+k, m—k,m— 2k}, where 2k <m, then
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Dyfm}s {4} = 5[O+al or 5[]
Difm}® (813 = £6[0—0] o7 15{P—d] according as m s even or odd.
Dym}o {217} = 4[0—d] o [®—5] !
Dyjmie {11} = 75[@+e] or F5[D+d]
D{m}® {2% = &[D+c] for all m,
where ® = (k-+1) (2k%+3k+2) and a, b, ¢, d, ¢ are given by table 9.
TABLE 9
k=x (r:clod 12) 4 b . 4 .
Oor4 15k +46 k+2 9% —2 bk+2 3k—2
lor9 —9k—5 k-3 —3k—11 —3k+1 3k+31
2 15%+18 k—2 9 +6 5k+6 3k—6
3or7 —9k+7 k+1 —3k—11 —3k—3 3k+19
5 —9k—21 k-3 —3k-3 —-3k+1 3k+15
6 or 10 15k +34 k—2 9%k —2 5k+6 3k+10
8 15k +30 k+2 9% +6 5k+2 3k—18
11 —9k—9 k+1 —-3k—-3 —3k—3 3k+3
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578 H. O. FOULKES ON THE
Proof. D\{m}* = }(k+1) (2k*+8k+2) = 10,
D{mp?{m}® = L(k+2) whenm,karee,e,
= 3(k+1) whenm, k areo, o,
=—1(k+1) whenm,karee,o,
= —14(k+2) whenm, £k are o, ¢,
Dim}{m}® =1 if k=0or1 (mod3),
=0 if k=2 (mod 3),
Dy{m}@ {m}® = }(3k+2) whenm, karee,eoro,e,
=—3(k+1) whenm, kareo,oore,o.
Finally, D{m}® =1 whenmisevenand k=0 (mod 4),
=1 when misodd and k=1 (mod 4),
=—1 whenmisevenand k=1 (mod 4),
=—1 whenmisoddand k=0 (mod 4),

= 0, otherwise.
The theorem. follows.

Specific formulae may be obtained in the same way for
D{mye {u} when {A} = {m-+rk, m+sk,m—sk,m—rk},
sk<m, rk<m, r>s and r,5s5=0,1,2,...,
but these results are not given here.
10. GENERAL THEOREMS ON RELATED COEFFICIENTS
This section contains generalizations of the theorems of §8.
THEOREM 28. Dy 1 syi1,. a1l + 130 {} = Dy, ... aim}@ {ii}, where (p) is any partition

of n.

Proof. Considering only partitions into 7 or fewer parts,
Ay, o s A3 {1 = {4, +1,4,+1,...,4,+1}
Hence Dy 1,001,000, a1+ 130 {p} = Dy, .. 2, Din{m+ 110 {1}

But fmt 1) () = 3 b, gt 1 [+ O] [+ 10
cp

where p is the class (122°3¢...). The non-zero terms in D, {m+1}¢[{m+1}®]* [{m+1}®]° ...
will arise only from a decomposition of the operator into
(DD, ...to afactors) (D2 D, ... to b factors) ...,

since Dy{m+1}") = 0 when p==r. Hence
Dyfm+1} [{m+ 1)@ [{m+1}9]° ... = [Difm+1}]* [Dyafm +-1}@]° [ Disfrm - 10 ...

= e [ [ .
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PLETHYSM OF S-FUNCTIONS 579

the sign being + or — according as the class p is even or odd. It follows that

Dyfm+1}e {u} = {mye {i},

and so the theorem is proved.
A proof for the case (4) = (n) has been given by Newell (1951)

THEOREM 29. If A, <m, then

Dy i 2gadm+1}® {1} = Dy ..., awimy® {u},

where () is any partition of n.
Proof. It is sufficient to prove that

Dy i, 23y A B [ O [+ 13O)0 . = Dy 5, o e ey @] [{mf)e .,

where a+2b+3¢c+... =n. If g, is the coefficient of {A} in {y}{v}, where (7), (v) are
respectively partitions of am into not more than a parts, and of m(2b+ 3¢ 4-...) into not more
than 26+ 3¢+ ... parts, then

Dy 2y ooy aal [} @1° [{m}] .. = ;g,,vaD,,{m}“ D,([{my®]* [{m}®]e ....)

The coefficient of {A; +n, Ay, ..., A} In {7, +a, 795 ooy 13 {1 +20+ 3¢+ ..., vy, ...y v, } will also
be g,,,, and so

Dy, dgyoe a4 13 [+ L]0 [fm 4-1J9)¢ ..
= 28 Dyira, 1o, 1M1 Dy, v ([ AT [+ 1}9]0 )

It should be noted that since 5,<m, then every partition of a(m-1) into not more than
a parts will be such that the difference between the first two parts will be at least equal to a.

It has been proved in theorem 2 that when 7, <m, D,{m}* = w, o+ 1}% and so it
remains to prove that

D,([{m}®]* [{m}®1° ...) = D,y inmg, vy paa ({411 [{m+1J0 ).

Let {v} appear in {£} {{} with coefficient g;,,, where (£), ({) are respectively partitions of 2bm

_into not more than 2 parts and of m(n—a—2b) into not more than n—a—2b parts. Then
{vy+n—a,vy, ...,v,_willappearin {§, +2b,&,, ..., £} {{ +n—a—2b,,, ...} with coeflicient
8re» Hence ‘

D, inma, vy v o [+ PP [+ 1J0]0 )
- Zgg£§vD£1V+2b, £aoms e M UPT Dy o0 g, ([ 413900 0).

’I1+a N2,

The next step is to show that

D§1+2b, £2,00e, E2b [{m + 1}(2)]b = Dgl, £2,000y §2b[{m}(2)] b’

and it is evident that to continue the proof in this way it must be shown that

D01+]Jr, 02,eee, 01,,[{7?2 -+ 1}(17)]" = Dﬁl, O2yen, t91”I:{fn}(ﬁ)]r,

Vor. 246. A. 73
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580 H. O. FOULKES ON THE

where (0,,0,, ...,0,,) is a partition of mpr. The two operator determinants concerned will
differ only in the first row, and when all the suffixes are divided by p and those operator

elements with suffixes prime to p are replaced by zeros, the operators reduce to

— ( —
D01,02,..., Opr — Z:I:Dﬁ) and D01+[JT, Ogerey Opr — ZiD(ﬁ)

TL 5 T2y T3yeeey Ty +7r, T2,

where (7,,7,,...) is a partition of rm. But, as in theorem 2,
Do, im0 = DY [},

and so the theorem is proved.
Theorem 29 is a refinement of a result, proved by Ibrahim (1952) using an invariant
theory argument, that

D, i, rgeadim 130 {0} =Dy 5, o {mb© {n}.

Theorems 28 and 29 may now be combined to give a generalization of the part of theorem 21
which refers to {A} .

THEOREM 30. If ly<m, m—A,=0= — A, and {4}, = {4, — (n—1) &, A+, A3+, ..., A, 40,

then D, {my® {u} = Dy{mj® {u} when a is even,

= D{m}® {u} when o is odd,
where (y) ts any partition of n.
Proof. From theorem 28,

D/\1+oc, }\z+oc,..., )(;H—Oc{m—l_“}@ {Iu} = D)([, /\2,..., /\n{m}® {lu} for even a}

=Dy, p..aimie{u} for odd «,

.....

and from theorem 29, if 1,<<m—a, then

D}\1+oc—noc, A2+ 0y }\,,-!-oc{m}@ {Iu} = D/\1+oc, Ao+ 0yeee, }\n+a{m+a}® {/l},

which proves the theorem. Negative values of « are allowable subject to 4,+a>0. For
negative a, theorem 29 requires A, +a<m+-a, giving 1,<\m in this case.

The next general theorem on the plethysm {m}® {} requires two preliminary results,
theorems 31 and 32.

Tueorem 31. D {u}{v} = D,,,_x{2m—u}{2m—v}, where (), (u), (v) are partitions of mn, ma,
mb into n, a, b parts respectively, and a+b = n.

Progf. Consider a rectangle of n rows, each row containing 2m nodes . Place the graph of
(%) in the top left-hand corner and the inverted graph of (2 —p) in the bottom right-hand
corner. Complete the graph of (1), assuming this is possible, by adding »; symbols «;,
v, symbols a,, ..., v, symbols &, in succession to the (#) graph so that no two of the added
symbols with the same suffix are in the same column and the suffixes increase when read
down any column. Fill up the remaining nodes in the rectangle, column by column, with
B1sBas -5 Py sO that the suffixes of the «’s and £’s in each column are all different, and the
suffixes of the §’s in any column, reading from the lowest suffix, are in ascending order of
magnitude. In this way the inverted graph of (2m—2) has been constructed in the bottom
right-hand corner by adding to the graph of (2m—u), 2m—v, symbols §,, 2m —v, symbols
B, and so on, such that no two of the added symbols with the same suffix are in the same
column. To each way of constructing the diagram (1) in the top left-hand corner there
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corresponds one way of constructing the diagram (2m—A1) in the opposite corner, and
conversely.
It has thus been shown that

D{uy i} {va} --- (v} = Dypz{2m—py (2m—vy} {2m—v, 1} ... 2m—v},
and similarly
D{uy {1+ 13 o+ 1} oo vy + 13y, + 18}
= D, s{2m—p}{2m—v,—14+b}{2m—v,_,—1}{2m—v,_,—1}...{2m—v,—1},

and so on for every term in the A-determinantal form of {v}. If v, +4£>2m, then both sides
become zero. Expanding the £-determinantal forms of {v} and {2m —} as

R VRIS BRI SR R S V(2% SR (NS b § SUAS ) Rl J 5 S
and {2m—v} = {2m—v}{2m—v,_}...{2m—v}
—{2m—v,—1+b}{2m—v,_—1}{2m—v,_,—1}...{2m—v, —1} + ...,
it follows that D\{u} {v} = D,,,_3{2m—pu}{2m—v}.

An example may make the procedure clearer. Take m =7,a=2,b =4, n = 6,
| ) = {11.98752), {u} = {86}, {1} ={10.852),
{2m—A} = {12.97653}, {2m—u} = {86}, {2m—v} = {9%64}.

One way of constructing the rectangle is then
R S By By By
a 0y Ay [ By By Ps Py P
ooa a w a4 a % Ay | By s s By By fo
Uy Ay Gy Uy Ay ag g | By By o By B B B

%y “4'/?3 Bs Bs P

the top portion giving one way of forming {11.98752} from {86} {10} {8} {5} {5} and the bottom
portion giving the corresponding way of forming {12.97653} from {86}{9}{9}{6}{4}.
Similarly, a diagram can be drawn associating one way of constructing {11.98752} from
{86}{11}{9}{6}{2} with the corresponding method of constructing {12.97653} from
{86}{12}{8}{5}{3}, and so on.

In the diagram above it so happens that the o’s form a lattice permutation

3,2 6 2 5 3 2 2
06y Qg 0y g g 0Ly L3 X Oy X3 X,

when read from right to left along the successive rows starting at the first, whereas the ’s

form a lattice permutation
BB BB BEPABY P3P Pu 1 PE 23

when read from left to right along the rows starting at the last, both diagrams being supposed
in their upright position. It seems probable that an alternative proof of theorem 31 might
be based on this observation.

73-2
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582 H. O. FOULKES ON THE
TrareoreM 32. If (4) is a partition of mpr into not more than pr parts, then
D,[{mi?]" = Dy, 5[ {m}®]".

Proof. To convert D, into DY’ the following result, due to Littlewood (1950, p. 133), is used.
If the numbers of the sequence

[“i] = [/ul +pr—1, py+pr—2, ps+pr—3, .. -’ﬂpr]a
congruent respectively to 0,1,2,...,p—1 (mod p), are not all equal, then {x} = 0. If they
are equal and those congruent to ¢ (mod p) are

plép+r—114q, plé+r—2149, ..., pE,+q,
then {1} = {01,805 > S0P 115 E12s -5 E1 )P {51;—1, 15 -~~=§p—1, A

where 6 is +1 or —1 according as a certain rearrangement of [¢;] is positive or negative.
The sequences [«;] written down for {4} and {2m—u} reduce to

m—1, Ho—2, ouy ﬂpr'_pr (modp)
and 2m—1—(p—pr), .y 2m—1—(uy—2), 2m—1—(u,—1) (modp).
These reduced sequences clearly consist of the same numbers, but they will differ in general
in their arrangement. It follows that if {4} is zero, then so is {2m—pu}, and conversely. The

next step is to show that when {u} is not zero, then 6 is the same for both {x} and {2m—u}.

Let o; = y,+pr—i=x (mod p). Then

Bproiss = (2m—pp) +pr— (pr—i+1)=2m—1—x (mody).

If 2m—1=e¢ (mod p), then o;=x (mod p) implies f,,_;,,=¢—x (mod p). If o, e, ..., a,a, are
the first p integers of the sequence [o;] to be congruent to p—1, p—2,...,2,1,0 (mod p) in
order, then £, ., 1,8, —si15 -++s Bpr—i+1> Bpr—n+1 are the last p integers of the sequence [£;] to be
congruent to ¢, e—1,e—2,...,6—(p—1) (mod p) in order. If the permutation of [«,] which
rearranges it into 7 sets, each set congruent to p—1, p—2, ...,2, 1, 0 in order, and having the
a’s congruent to any given residue in descending order throughout the 7 sets, is an even
permutation, then § = 4-1. If it is an odd permutation then § = —1. To such a permutation
of [«;] there corresponds, by changing 7 into pr —i+1, a permutation of the same orders in
the cycles of [f]; for example, the cycle or cycles giving the first set of a’s congruent to
p—1,p—2,...,1,0in order correspond to a cycle or cycles of the same order on the f’s giving
the last set of f’s congruent toe,e—1, ...,e— (p—1) in order. To show that 6 is the same for
[«] and [f;], all that is now required is to show that p—1, p—2,...,2,1,0 can be obtained
frome,e—1,...,6—(p—1) (modp) by an even permutation. This is so because the addition
of (p—1)—¢ to each term of the latter sequence is equivalent to adding — (1+¢) (mod p),
which is 2m (mod p). Hence @ is the same for both {y} and {2m—pu}.

Let {#} and {2m —u} be written respectively as

04€015 02> -5 Eord P {115 €125 -+ s E1f D) - {gp—l, 1 o3 Epo, P
and 0@01» oz -+ o5 gOr}(p) {&11> &1y - £ 1D {gp—l, JEREED) Zp—l, .
It will now be shown that

{gxb §x2’ (] xr} = {axm Ee—x, Gy Ze—x, S PR/ Vo Ee—x, 1}’

where ay+a; +a,+...+a,_; = 2m.
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Let a,; be the ith a=x (mod p), where x>0, and let f_. ,_;,, be the (r—i+1)th f=¢—x
(mod p), where 2m—1 = ¢+ pk and ¢20. Then ‘

ay; = pl;+r—i]+x forx=0,1,2,....,p—1,

lb)e—x, r—i+1 zp[ge—x, r—i+1+r'—(r—i+ 1)]+€—x if x<€,
:P[Ze—x,r—i+1+7“(7"i+1)]+[)+6——x if X>€,

it being assumed that when ¢—x is negative in a suffix of £ or £ it is replaced by p+ (¢ —x).
But if %y = aj’ then ﬂe'—x, r—i+l = ﬁpr—jﬂa and so luj -I—[ﬂ'—] zl)[gxz—i_r—l] +x> and

om—p;+pr— (pr—j+1) = pl€,_, , i +i—1]+e—x if x<e,
= pllecs, rmii Fi—1+p+(6—x) if x>e.

Hence p[gxi_[_ze—x,r—ﬁl]:2m_1+p—€ if X<E,
=2m—1—e¢ if x>,

that iS, gxi + Ee——x, r—i+l — k+ 1 if xée,
=k if x>e.

If a, = k41 when x<¢ and a, = k£ when x>¢, then
ayta,+...tatag +...ta, = (e+1) (k+1)+(p—e—1)k=kp+e+1 = 2m.
It has thus been proved that if {u} = 0{§ )P {£,}® ... {£, |}, then

{2m—u} = O0fay—E,_o}® {dl_ge—l}(p) {ap—l“ge—pﬂ}(m,

where ay+a;+...+a,_; = 2m.
It must now be shown that if () is a partition of mr into not more than r parts, then the
coeflicient of {£} in {{)}{€;} ... {§,-1} is the same as the coefficient of {2m— £} in

{ag—&_o}{a— Ee—l} e {ap—l - ge—jﬂrl}‘

The partition graphs of {£_,} and {a,—&,_,} are such that they can be placed in a rectangle
of r rows of a, nodes in each row so that {£,_.} occupies the top left-hand corner and the
inverted graph of {a,—,_} the bottom right-hand corner, the nodes of the rectangle being
completely used up.

Take a rectangle of 7 rows with 2m nodes in each row and place the graph of {£,_,} in the
top left-hand corner and that of {ay—£,_} inverted in the bottom right-hand corner. The
places so filled can be regarded as originating from the rectangle of r rows of ¢, nodes in each
row formed from the graph of {{,_} and the inverted graph of {a,—£,_,}. Consider now the
a; x r rectangle made up of {£,_,} and {¢;, —,_,} inverted. Let the nodes of {£,_;} be denoted
by p; and those of {a, —&,_,} by ¢;, where ¢ denotes the column in which the node occurs.
Take the symbols p; and apply them to the graph of {£,_,} in the top left-hand corner of the
2m X r rectangle so that no two of the symbols are in the same row, and so that a Young
diagram is formed in the usual way. Then apply the symbols ¢, to the inverted graph of
{ay—&,- o} in the bottom right-hand corner so that no two symbols ¢, are in the same row, and
so that each row of the rectangle contains either a p, or a ¢;. Continue in the same way with
the symbols p, and g, so that each row contains a p, or a ¢,, and then with ps, ¢, and so on.
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The placing of the ¢/’s is thus determined by that of the p;’s, and so in this way the con-
struction of a diagram corresponding to some S-function {n} of 7 or fewer parts in the top
corner of the rectangle from the product {£,_o}{1¢}{1} ... {1°%}, where ¢, is the number of
nodes in the ith column of {{,_,}, has been made to correspond uniquely with the con-
struction, in the bottom corner of the rectangle, of a diagram {(a,+ «,) —7} from the product
{ag—&,_o} {171} {1772} ... {17~¢a}. Similarly, to each construction of {m} from

AT T BESER

there corresponds a unique construction of {(a,+a,) —7} from

{“o _ Ee—o} {17‘—6‘1— 1} {lr—cz— 1} . {1r—cal+a1—1},
and so on for every term in the expansion of the a-determinantal forms of {¢,_,}and {a;, —&,_,},

that is, the determinants whose elements are of type {1*}. The argument now follows that
of theorem 31, using the a-determinants instead of the /-determinants used in that theorem.

Hence DA HE.—1} = Digyrapy-100—Ee—o} {a1 —&,_1}-

Continuing this process with {£__,} and {a,—&,_,} and so on, it follows that since
aytay+...+a,_ = 2m,

the nodes of the p smaller rectangles will ultimately exactly fill the 2m x r rectangle, and to
each way of constructing {£} from {{;}{£,}...{{,-,} in the top left-hand corner there will
correspond one way of constructing {2m — £} from {a,—&,_}{a,—&,_;}... {a;,—&,_,,,} in the
bottom right-hand corner and conversely.

It has thus been shown that if

_ ) DW » — (»)
Dﬂ o 0D§o DE: Dg{;-: - Zggﬂngp ’

then DZm—ﬁ = HD%)—ge—ng:)— e-1°"" D%)—l—ge-pﬂ = %gyﬁD(Z%—Z'
But from theorem 3, DP[{myP]" = DE)_#[{m}?]",

since the superscript (p) is immaterial to the way the S-functions and the operators combine
together. Hence the proof is complete.

As an illustrative example take m =5, p =3, r =4, {4} ={10.8765°43%1}, and so
{2m—u} = {97°6534320}. The sequence [o;] is 21, 18, 16, 14, 12, 11, 10, 8, 6, 5, 4, 1. This can
be arranged as :
3(4+3)+0, 3(4+4+2)+0, 3(3+1)+0, 3(2+40)+0,
3(2+3)+1, 3(14+2)+1, 3(0+1)+1, 3(0+40)-+1,
3(1+3)+2, 3(14+2)+2, 3(1+1)+2, 3(1+0)+2,

from which {10.8765343%1} = 0{4232}® {21}® {14}®, where # is +1 or —1 according as the
permutation coverting [o;] into 14, 16, 21; 11, 10, 18; 8, 4, 12; 5, 1, 6 is even or odd.
Treating {2m—p} similarly gives [§] as 20, 17, 16, 15, 13, 11, 10, 9, 7, 5, 3, 0 from
which {9736534320} = ¢’ {21}® {24}®{3221}®, where ' is +1 or —1 according as the
permutation converting [f] into 20, 16, 15; 17,13, 9; 11, 10, 3; 5, 7, 0 is even or odd. The
permutation on the twelve numbers of [¢;] is (14623) (578.11.12.9) (10) and the corre-
sponding permutation (12.97.11.10) (865214) (3) applied to [£] gives 15, 20, 16; 9, 17,


http://rsta.royalsocietypublishing.org/

JA '\

A A

’—‘]xt
NI
olm
~ =
oY)
o)
= uw

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
1~

NP
O H
e
= O
= O
= w

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PLETHYSM OF S-FUNCGTIONS 585

13;3,11,10;0,5,7.To put theseinto the required order clearly requires an even permutation,
showing that 6 = ¢'.

The three S-functions arising from {4} can be combined with their counterparts arising
from {2m—u} into the rectangles

AN AT R
N | 66 H|@ &6
G 92 95 P | g
B 9 9 |G g

in which ¢, = 4, a, = a, = 8, agreeing with a, = k+1 for x<e¢, and a, = k for x>¢, since
k =3, ¢ = 0. The following diagram shows how one way of forming {r} = {6432} from
{€e-op {1} {122} {15} = {4232} {12} {1} {1} corresponds to one way of forming

(ag+a) —m} = {4781} from {ay—E,_ {1} {1~} {17~} = {21} {17} {13} {1}

and also how one way of forming {£} = {7542} from {£,} {£,} {£,} = {4232} {21} {1*} corresponds
to one way of forming {2m— £} == {6253} from

{ao—E-oHai—E-Hay— &} = {21} {3221} {2*):
| b 2 | h " g5 7> | g3

i

’ ’ ’

- Y41 qs g qs 92 7
r ]

1| A

==

L | 5
TuEOREM 33. D, 3{m}® {} = D{m}® {4}, where () is any partition of n.
Proof. It will suffice to show that

Dy{mye [m}@)° [{m}®)° ... = Dy, _xfm}e [{m}@]° [{m}®]° ...
By theorem 31, every decomposition of D, into D,D,D, ..., where (w), (v), (y), ... are

partitions of ma, 2mb, 3mc, ... into a, 2b, 3c, ... parts respectively, has an exact counterpart in
the decomposition of D,,,_3 into D,,, D,,, Dy, ... Hence if

Dl [} [n}O) . = S gDifm}e DLGn ] D, [ ..,

I A B S A

——
/ |

R I N

caee

where g is the coefficient of {A} in {w}{v}{y} ..., then
Dy, —zfme @ [} ... = 3 gDy, _g{m}* Dy, 5 [{m}®]> Dy, [ {m}®]e ...

O,V 75 s0ee
But, by theorem 32, D {m}* = D,,,_{m}*, D,[{m}®]® = D,,,_.[{m}?]?, and so on. The theorem
follows. v

THEOREM 34. If A, <m and m+-1,>f=>A,, and {A}; denotes
{2nm_ (”"‘ 1) ,6’——/11,/5’——/1", ﬂ_/ln-—lﬁ "'a/’)*’lz}a

then Di{u}{v} = DA%{,u};g {v}s, where (1), (w), (v) are partitions of mn, ma, mb into n, a, b parts
respectively, and a+b = n.
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Proof. Consider a rectangle of n—1 rows with f§ nodes in each row. Above this rectangle
place a row of A, nodes, starting above the top left-hand node of the rectangle and pro-
ceeding from left to right. Below the rectangle place a row of 2nm— (n—1)f—A; nodes,
starting below the bottom right-hand node of the rectangle and proceeding from right to
left. Place the partition graph of (x) in the top left-hand corner and the inverted graph of
{#}5 in the bottom right-hand corner. Consider in the first place the rectangle only and the
construction in it of the diagram associated with {A,, ..., 4,} from the product

(s s o} 1+ — A3 o} s} - V)

To do this, proceed as in theorem 31 by adding v, 4, —1, symbols «; to the diagram of
{Utg, ..., .} so that no two symbols lie in the same column and so that the resulting diagram
is, as usual, a Young diagram. Then add v, symbols «, in the same way, no two a’s with the
same suffix lying in the same column, and so on for further sets of v, ..., », symbols.

In the bottom right-hand corner of the rectangle construct in the same way the diagram
of {f—A,, ..., f—A,} from the product

{8 —tas B —tars s B—pio} {f— (01 + 11— A1)} {B—va} ... {f—v3}

by applying f— (v, +#, — ;) symbols §, to the diagram of {f—u,, f—p,_,, .-, f — s} s0 that
every column of the rectangle has either an a, or a £, and then applying f—v, symbols f,
so that every column has either an «, or a f,, and so on. The rectangle will ultimately be
filled with the symbols and the diagrams of {s,, ..., #,} and {f—u,, ..., f — o}, thus showing
that to each way of building {A,, ...,A,} from {s,, ..., g} {v, +#, — A} {y} ... {v,} there corre-
sponds one way of building {f—A4,, ..., —21,} from

{B—thgs o =t} 1B~ 1+ —W)HA v} AP~}

and conversely. The argument of theorem 31 applied to the A-determinantal forms of
{vy, ..., v} and {f—v,, ..., f—v,} then shows that

D/\g,..., /\n{/‘zs e :“a} {Vl + —’11} {Vza ceey Vb}
= D,b’—/\,,,..., ﬁ—Az{ﬂ“ﬂaa coos Bt} {f— (vi+y —A)HB— Vs - o=V}

Since A, >m and y,<m, then g,—1—A1,<0, and so the determinant D,{x} whose elements
are all D operators will have its first column composed of zeros except for the leading
element D, _, . Hence it can be written as

D/h—m D/\z,..., )L,.{/‘Za ceey /ua}:
and so D{u} (v} = Dy, Dy, ., a5 - 3 0}
= Dlz,n-, /\n{:“,2> AR /ua} D/\l—,ul{v}'

If v,—1—2,+u, <0, then the determinant D, _, {v}, whose elements are S-functions, will
have its first column zero but for the leading term {v; —A; +x,}, and so

D{w{v} = D/\2,..., ,\,,{:“2, ~-~aﬂa} = 4w} {Vgs s V)

If v,—1—A, -+, >0, then the second element in the first column is non-zero as well as the
first, and there will be additional termsin D, _, {v} due to the product of this second element
and its cofactor. It is, however, impossible to construct the diagram {A,, ...,4,} from such
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terms, since every such term will contain an element {v, 47}, 7> 0, of the first row of {1}, and
vy+71>1, in virtue of 1,<<m and v, >m. Hence the only effective term in D, _, {1} is, in all
cases, {1y—y i} (P -vvy 75} and 50 Dy {5} = D s weos b 0y — Ay g} s -y} i
every case.

Similar considerations give

D/\},{/‘}’ﬁ {V};? = Dﬁ—/\,,,..., ﬂ—/lg{ﬂ_lua, coos B— o} {f— (v = 1) HB— Vs ..o, =7},
from which the theorem follows.
As an example, suppose m =n =7 and {1} = {22.6%5432}, giving 10>/>6. Taking
£ =10, then {A};, = {16.72654%}, and if a =4, b =3, {u} = {18.432}, {v} = {962}, then
{1} = {87%6} and {1};, = {13.4%}. The diagram is

Loy oy o 0‘1,

s Bs Bs fs
_15)2 By Ba By
. Oy _f‘_s_lﬁl b By By By

% @ &y &g

.oy oy O

Uy Oy Oy B
: Qg Oy Og
B By By B B By By B SR
showing that Disy52{4373 {5} {6} {6} = Drg542{776} {5} {4} {4}
Similarly, Disy5:{43%} {5} {T}H{5} = Dirngs {776} {5} {5} {3},
being equal to zero in this example since the diagram cannot be constructed, and so by
subtraction Disy52{437} {5} {67} = Dyags o726} {5} {47}
But Dy Dy Dy Dy, Dy Dy Dy
D, D, D5 Dy Dy, Dy,
- D Dy D Dy Dy Dy
Dy g545{18 . 432} {96%} = | . . D D, D D Dy |{96%
. 1 D, Dy D
D, Dy D,
. . . D D, D
= D, D543-{43%} {967}

{5y {10y {11}
{13 {6 {71}
{0y {53 {6}
since terms such as {1} {10}{6}, {1}{11}{5}, {0}{10}{7} and so on, cannot contribute to the
building of {62543%}. In this example {6%} could be replaced by {6} {6}, since {5}{7}{5}
cannot contribute to {625432}, but this need not be so in every case. Similarly,

D16. 726542{8726} {1 3. 42} = D726542{726} {5} {42},

so that the theorem has been verified.

= 625432{432} = D625432{432} {5} {62}a

VoL. 246. A. 74
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588 H. O. FOULKES ON THE
‘THEOREM 35. If (u) is a partition of mpr into pr parls and m= py, m~+ p,, =f = p, and

{15 = {2mpr— (pr—1) B—piys B—tprs B—Mpr1s - B—Ho}s
then D[} = (— 1) D, [m}®)".

Proof. Following the lines of theorem 32, the sequences [«;], [£;] for {4} and {x}; respectively
e (] = =1,y =2, ooy pyy—pr (mod p)
and  [f] =F—m—LF—pp—2f 1 =35 s F—py+ 1, f—py  (mod p)
=F=2—(m—1), B—2— (pp—1p1); F—2— (py 1 —Pr+1), ..., [~ 2— (4 — 2).

Each of the sequences reduced mod p will thus consist of the residues 0,1, ...,p—1 with
varying multiplicities in general, but if the multiplicities are unequal in [¢;] they will clearly
be unequal in [£] and conversely. It follows that if {u} = 0, then {4}, = 0 and conversely.

It is now necessary to relate the signs # and ¢’ associated with {#} and {4}}, in the non-zero
case. Let a; = p,+pr—1=y (mod p), and f—2=¢ (mod p). Then

th = 2mpr—(pr—1) f—m
=f—p (modp)
=¢—y+1 (modp) andso f,=u—1l=c—y (modp).

Let a; = g+ pr—i=x (mod p), for ¢>1. Then

Bprive = (B—) +pr—(pr—i+2)
—f—p+i—2 (modp)
=¢—x (mod p).

Now apply the cyclic permutation (1.2.3.....pr) to the suffixes of [f;]. This moves each
f; one place to the left, for i>1, and relegates f, to the extreme right-hand place. Then to
the first set of p integers from [e;] which are congruent mod p to p—1,p—2,...,1, 0 in order
there now corresponds the last set of p integers from the permuted [f;] which are congruent
toe—(p—1),e—(p—2),...,6—1,ein order, the suffixes being such thata,, a;, ..., o, ..., ¢, 2,
correspond 0 f£,.5 py Bpran—po o3 P1s o3 Bpriase

The second and subsequent sets of p integers from [¢;] which are congruent to p—1,
p—2,...,1,0 in order have their counterparts in sets of p integers from [f;] which are
congruent to €—(p—1), e—(p—2),...,6—1,¢ in order, the suffixes being such that ¢,
corresponds to f,,.,,_; the complication of making f; correspond to «; occurring only in
relating the first set from [«;] with the last from [f;].

It follows that the permutation (a,a,a,...) (¢,,...) ... which rearranges [¢;] into 7 sets,
each congruent to p—1,p—2,...,1,0 in order, corresponds to a permutation of the same
order in the cycles which rearranges the permuted [f;] into r sets, each congruent to
e,6—1,6—2,...,6—(p—1). This permutation is (58, +0-aBprsa-b ) Bpria—cBprra—a-+-) o+
The » numbers of [f;] which are congruent to ¢é—y are not, however, in the required
descending order, but they can be put into this order by a cyclic permutation of order 7,
since the last of them, £, has to come into the place of the first of the f§; which is congruent
to e—y, and the others have to be moved one place to the right.
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All that remains is to convert each of the r sets of integers congruent toe,e—1, ...,e— (p—1)
into a set congruent to p—1,p—2,...,1,0. As in theorem 32, this is effected by adding
—(1+¢), that is, —(f—1), and reducing mod p. The combined effect of the three cyclic
permutations on [f;] is incorporated in

0 — ﬁ(_._ 1)(pr—l)+(r—1)+r(1—/9)(p—1) _ 0(_ 1)(p—l)ﬂr.

Writing {1 = 0801 Eops - s E}® o Epr 13 o or Epr, SO
and (s = 0'{801 Eogs o> G ? o AEpor, 1 -5 Epmr, SO,
then = plEu+r—11+y,
and pr=plEy Fr—11+(—y)  if 6>y,

:p[ge—y,l+r_1]+l)+(€—y) if €<Y,
where it is assumed that in any suffix, ¢ —y is replaced by p-+ (¢—y) whenever ¢<y.
- Let f—2 = ¢+ pk; then
a+p, :p[gyl+ze—y, +2rp—2p+e if exy,
:p[§y1+ge—y, 1]+27p—p+€ if €<y'
But a; = gy +rp—1 and g, = 2mpr— (pr—1) f—p, +rp—1, from which
EptE, 1 =2m—if+k+2 if e>y,
=2mr—1f+k+1 if e<y.
Next, if i+ 1, then o, = p[ ;+7—i]+y and
ﬁe—y, r—i+2 — lb[ge—-y, r—i+2+r— (7-2—1—2)] +€_y if €>y’
:p[ge—y,r—i+2+r——(r_i+2)]—I_lb—l_e_—y if €<y’
But if «,; = o, then f._, ,_;.o = By_j1o and so p; +pr—j = p[§,,+r—1] +y and
ﬂ_/‘j+\]._2 zlb[ge—y, r—i+2+i_—2]+€—‘y if €>ya
:p[Ze—y, r—i+2+i—2] +1b+€_y if €<Y,
from which, when i1, Eit ey roiva=k+2 if e>y,
=k+1 if e<y.
In the same way it can be shown that when x=y,
gxi_'—ge—x, =i+l — k_l_l if . 62.’6’,

=k if e<ux,
fori=1,2,...,r.

If a, = k+1 when ¢>x, and ¢, = k£ when ¢<x, and ¢, = k+2 when ¢>y, and a, = k+1
when ¢ <y, then
agtay+ag+...ta,_ = (6+1) (k+1)+(p—1—e)k+1=4.
It has thus been shown that if

= 01 o 2 E0d o b ) oyt 1o By r, N,

74-2
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590 H. O. FOULKES ON THE
then {1 = (—1)re=D0{ay—&, ag—Eg, ;15 s Gg—Eg1}? ...
o A2mr—1fta,—E 1 a,—8y 0, =8, 15 @y — )P
.. {ap~l gp—l, p@p_1— gp—l, p=15 -0 @y —gp—l, 1}(1))9

where ay+a,+...+a, | = f.

It remains to show that if (§) = (;,&,, ..., &,) is a partition of mr, then the coeflicient of

1
{g} " {§01? gOZ’ ""gﬁr} b {gyli "')gyr} e {£p~1, 1 "‘7£p—l,r}

is equal to the coefficient of

{g},’ﬁ = {er_ (7’—- 1) ﬁ_gla/))_“graﬂ_gr—la "'3/))_52}
in the product of the corresponding S-functions associated with {x}}.

The argument of the last part of theorem 32 will apply here with only a slight modification,
for when x<y, the diagrams of

{gxlﬂngﬂ . ’gxr} and {d xr> ay gx, r—15 " axngl}

can be combined into an a, X r rectangle, whilst

{gylagym' >£yr} and {2m-r,b’—}—a yl)ay gyr" ° J/ ;112}

give an a, X 7 rectangle with the first row continued £, — ¢, places to the right, and the last
row continued 2mr—rf—§,; places to the left.

It is convenient then to proceed as in theorem 32 until the f X r rectangle is filled up,
taking {£,1, &0, - -+, £,,} and its counterpart as the final members of the products giving {£} and
{£}; respectively. Those nodes falling outside the a, x r rectangle will then necessarily fal)
outside the £ x r rectangle, giving the first rows of {{} and {£}; respectively. Thus to each way
of constructing {£} from the first product there is a unique way of constructing {£}; from the
second product and conversely.

It has thus been shown that if

D,=0[3g,DPl, then Dy, = (~1)"0D0[3g,DY].

But from theorem 2, corollary 2,
DO} = DY LT,
since the presence of the superscripts is immaterial, and so the proof is complete
THEOREM 36. If A, <m, and m+2A,=F>=A,, then

Dy {my® {u} = Dyfmy® {p}  for even f,

= Dy{mie (@} for odd f,
where (1) is any partition of n.
Proof. From theorem 34, if
Dyfme [{m}®] [{m}®)e ... = 3 gD, fm}* D[{m}®]° D,[{m}]° ...,
W,V 7y e

where (), (v), (1), ... are respectively partitions of ma, 2mb, 3me, ... into a, 2b, 3¢, ... parts,
and g is the coeflicient of {A} in {0} {v}{} ..., then

Dyl [m®P L) . = 3 gDyl D[{m)®1 Dy [fmi) ..
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| PLETHYSM OF S-FUNCTIONS 591
But by theorem 35, D,{m}* = D, {m}*,
D[{m®]° = (=1)7 Dy [{m}®]*,  D,[{m}¥]° = Dy [{m}®],
and so on. Hence if fis even, Dy{m}* [{m}®]" ... = Dy {m}* [{m}®]" ..., whereas if £ is odd the
sign is reversed whenever the class 142%3¢... is an odd class. The theorem follows.
Theorems 28, 29, 30, 33 and 36 are of considerable use in the computation of {m}® {u}.

They have been used in conjunction with one of Littlewood’s (1944) methods to compute
the full expansion when m = 5 and () is any partition of 5.
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